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AST1100 Lecture Notes

1–2 Celestial Mechanics

1 Kepler’s Laws

Kepler used Tycho Brahe’s detailed observations of the planets to deduce
three laws concerning their motion:

1. The orbit of a planet is an ellipse with the Sun in one of the foci.

2. A line connecting the Sun and the planet sweeps out equal areas in
equal time intervals.

3. The orbital period around the Sun and the semimajor axis (see figure
4 on page 8 for the definition) of the ellipse are related through:

P 2 = a3, (1)

where P is the period in years and a is the semimajor axis in AU
(astronomical units, 1 AU = the distance between the Earth and
the Sun).

Whereas the first law describes the shape of the orbit, the second law
is basically a statement about the orbital velocity: When the planet is
closer to the Sun it needs to have a higher velocity than when far away
in order to sweep out the same area in equal intervals. The third law is a
mathematical relation between the size of the orbit and the orbital period.
As an example we see that when the semimajor axis doubles, the orbital
period increases by a factor 2

√
2 (do you agree?).

The first information that we can extract from Kepler’s laws is a relation
between the velocity of a planet and the distance from the Sun. When
the distance from the Sun increases, does the orbital velocity increase or
decrease? If we consider a nearly circular orbit, the distance traveled by
the planet in one orbit is 2πa, proportional to the semimajor axis. The
mean velocity can thus be expressed as vm = 2πa/P which using Kepler’s
third law simply gives vm ∝ a/(a3/2) ∝ 1/

√
a (check that you understood

this!). Thus, the mean orbital velocity of a planet decreases the further
away it is from the Sun.
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When Newton discovered his law of gravitation,

~F =
Gm1m2

r2
~er,

he was able to deduce Kepler’s laws from basic principles. Here ~F is the
gravitational force between two bodies of mass m1 and m2 at a distance
r and G is the gravitational constant. The unit vector in the direction of
the force is denoted by ~er.

2 General solution to the two-body prob-

lem

Kepler’s laws is a solution to the two-body problem: Given two bodies with
mass m1 and m2 at a positions ~r1 and ~r2 moving with speeds ~v1 and ~v2

(see figure 1). The only force acting on these two masses is their mutual
gravitational attraction. How can we describe their future motion as a
function of time? The rest of this lecture will be devoted to this problem.

In order to solve the problem we will now describe the motion from the
rest frame of mass 1: We will sit on m1 and describe the observed motion
of m2, i.e. the motion of m2 with respect to m1. (As an example this
could be the Sun-Earth system, from the Earth you view the motion of
the Sun). The only force acting on m2 (denoted ~F2) is the gravitational
pull from m1. Using Newton’s second law for m2 we get

~F2 = −G
m1m2

|~r |3
~r = m2~̈r2, (2)

where ~r = ~r2 − ~r1 the vector pointing from m1 to m2 (or from the Earth
to the Sun in our example). Overdots describe derivatives with respect to
time,

~̇r =
d~r

dt

~̈r =
d2~r

dt2

Sitting on m1, we need to find the vector ~r(t) as a function of time (in
our example this would be the position vector of the Sun as seen from the
Earth). This function would completely describe the motion of m2 and be
a solution to the two-body problem (do you see this?).

Using Newton’s third law, we have a similar equation for the force acting
on m1

~F1 = −~F2 = G
m1m2

|~r |3
~r = m1~̈r1. (3)
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Figure 1: The two-body problem.

Subtracting equation (3) from (2), we can eliminate ~r1 and ~r2 and obtain
an equation only in ~r which is the variable we want to solve for,

~̈r = ~̈r2 − ~̈r1 = −G
m1 + m2

|~r |3
~r ≡ −m

~r

r3
, (4)

where r = |~r | and m = G(m1 + m2). This is the equation of motion of
the two-body problem,

~̈r + m
~r

r3
= 0. (5)

We are looking for a solution of this equation with respect to ~r(t), this
would be the solution to the two-body problem predicting the movement
of m2 with respect to m1.

To get further, we need to look at the geometry of the problem. We
introduce a coordinate system with m1 at the origin and with ~er and ~eθ

as unit vectors. The unit vector ~er points in the direction of m2 such that
~r = r~er and ~eθ is perpendicular to ~er (see figure 2). At a given moment,
the unit vector ~er (which is time dependent) makes an angle θ with a given
fixed (in time) coordinate system defined by unit vectors ~ex and ~ey. From
figure 2 we see that (do you really see this? Draw some figures to convince
yourself!)

~er = cos θ~ex + sin θ~ey

~eθ = − sin θ~ex + cos θ~ey

The next step is to substitute ~r = r~er into the equation of motion (equa-
tion 5). In this process we will need the time derivatives of the unit
vectors,

~̇er = −θ̇ sin θ~ex + θ̇ cos θ~ey

= θ̇~eθ

~̇eθ = −θ̇ cos θ~ex − θ̇ sin θ~ey

= −θ̇~er
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Figure 2: Geometry of the two-body problem.

Using this, we can now take the derivative of ~r = r~er twice,

~̇r = ṙ~er + r~̇er

= ṙ~er + rθ̇~eθ

~̈r = r̈~er + ṙ~̇er + (ṙθ̇ + rθ̈)~eθ + rθ̇~̇eθ

= (r̈ − rθ̇2)~er +
1

r

d

dt
(r2θ̇)~eθ.

Substituting ~r = r~er into the equation of motion (equation 5), we thus
obtain

(r̈ − rθ̇2)~er +
1

r

d

dt
(r2θ̇)~eθ = −m

r2
~er.

Equating left and right hand sides, we have

r̈ − rθ̇2 = −m

r2
(6)

d

dt
(r2θ̇) = 0 (7)

The vector equation (equation 5) has thus been reduced to these two scalar
equations. Go back and check that you understood the transition.

The last of these equations indicates a constant of motion, something
which does not change with time (why?). What constant of motion enters
in this situation? Certainly the angular momentum of the system should
be a constant of motion so let’s check the expression for the angular mo-
mentum vector ~h (note that h is defined as angular momentum per mass,
(~r×~p)/m2 (remember that m1 is at rest in our current coordinate frame)):

|~h| = |~r × ~̇r| = |(r~er) × (ṙ~er + rθ̇~eθ)| = r2θ̇.

So equation (7) just tells us that the magnitude of the angular momentum
h = r2θ̇ is conserved, just as expected.

To solve the equation of motion, we are left with solving equation (6). In
order to find a solution we will
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1. solve for r as a function of angle θ instead of time t. This will give us
the distance of the planet as a function of angle and thus the orbit.

2. Make the substitution u(θ) = 1/r(θ) and solve for u(θ) instead of
r(θ). This will transform the equation into a form which can be
easily solved.

In order to substitute u in equation (6), we need its derivatives. We start
by finding the derivatives of u with respect to θ,

du(θ)

dθ
= u̇

dt

dθ
= − ṙ

r2

1

θ̇
= − ṙ

h

d2u(θ)

dθ2
= −1

h

d

dθ
ṙ = −1

h
r̈
1

θ̇
.

In the last equation, we substitute r̈ from the equation of motion (6),

d2u(θ)

dθ2
=

1

hθ̇
(
m

r2
− rθ̇2) =

m

h2
− 1

r
=

m

h2
− u,

where the relation h = r2θ̇ was used twice. We thus need to solve the
following equation

d2u(θ)

dθ2
+ u =

m

h2

This is just the equation for a harmonic oscillator (if you have not encoun-
tered the harmonic oscillator in other courses yet, it will soon come, it is
simply the equation of motion for an object which is attached to a spring
in motion) with known solution:

u(θ) =
m

h2
+ A cos (θ − ω),

where A and ω are constants depending on the initial conditions of the
problem. Try now to insert this solution into the previous equation to
see that this is indeed the solution. Substituting back we now find the
following expression for r:

The general solution to the two-body problem

r =
p

1 + e cos f
(8)

where p = h2/m, e = (Ah2/m) and f = θ − ω.

We recognize this expression as the general expression for a conic section.

3 Conic sections

Conic sections are curves defined by the intersection of a cone with a
plane as shown in figure 3. Depending on the inclination of the plane,
conic sections can be divided into three categories with different values of
p and e in the general solution to the two-body problem (equation 8),
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Figure 3: Conic sections: Circle: e=0,p=a, Ellipse: 0 ≤ e < 1, p =
a(1−e2), Parabola: e = 1, p = 2a, Hyperbola: e > 1 and p = a(e2−1)

1. the ellipse, 0 ≤ e < 1 and p = a(1 − e2) (of which the circle, e = 0,
is a subgroup),

2. the parabola, e = 1 and p = 2a,

3. the hyperbola, e > 1 and p = a(e2 − 1).

In all these cases, a is defined as a positive constant a ≥ 0. Of these curves,
only the ellipse represents a bound orbit, in all other cases the planet just
passes the star and leaves. We will discuss the details of an elliptical orbit
later. First, we will check which conditions decides which trajectory an
object will follow, an ellipse, parabola or hyperbola. Our question is thus:
If we observe a planet or other object close to a star, is it in orbit around
the star or just passing by? For two masses to be gravitationally bound,
we expect that their total energy, kinetic plus potential, would be less
than zero, E < 0. Clearly the total energy of the system is an important
initial condition deciding the shape of the trajectory.

We will now investigate how the trajectory r(θ) depends on the total
energy. In the exercises you will show that the total energy of the system
can be written:

Total energy of a two-body system

E =
1

2
µ̂v2 − µ̂m

r
, (9)

where v = |~̇r|, the velocity of m2 observed from m1 (or vice versa) and
µ̂ = m1m2/(m1 + m2).

We will now try to rewrite the expression for the energy E in a way which
will help us to decide the relation between the energy of the system and
the shape of the orbit. We will start by rewriting the velocity in terms of
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its radial and tangential components using the fact that ~v = ~̇r = ṙ~er + r~̇er

v2 = v2
r + v2

θ = ṙ2 + (rθ̇)2, (10)

decomposed into velocity along ~er and ~eθ (check that you got this!). We
need the time derivative of r. Taking the derivative of equation (8),

ṙ =
pe sin f

(1 + e cos f)2
θ̇,

we get from equation (10) for the velocity

v2 = θ̇2 p2e2 sin2 f

(1 + e cos f)4
+ r2θ̇2.

Next step is in both terms to substitute θ̇ = h/r2 (where did this come
from?) and then using equation (8) for r giving

v2 =
h2e2 sin2 f

p2
+

h2(1 + e cos f)2

p2
.

Collecting terms and remembering that cos2 f + sin2 f = 1 we obtain

v2 =
h2

p2
(1 + e2 + 2e cos f).

We will now get back to the expression for E. Substituting this expression
for v as well as r from equation (8) into the energy expression (equation
9), we obtain

E =
1

2
µ̂

h2

p2
(1 + e2 + 2e cos f) − µ̂m

1 + e cos f

p
(11)

Total energy is conserved and should therefore be equal at any point in
the orbit, i.e. for any angle f . We may therefore choose an angle f which
is such that this expression for the energy will be easy to evaluate. We
will consider the energy at the point for which cos f = 0,

E =
1

2
µ̂

h2

p2
(1 + e2) − µ̂m

p

We learned above (below equation 8) that p = h2/m and thus that h =√
mp. Using this to eliminate h from the expression for the total energy

we get

E =
µ̂m

2p
(e2 − 1).

If the total energy E = 0 then we immediately get e = 1. Looking back at
the properties of conic sections we see that this gives a parabolic trajectory.
Thus, masses which have just too much kinetic energy to be bound will
follow a parabolic trajectory. If the total energy is different from zero, we
may rewrite this as

p =
µ̂m

2E
(e2 − 1).

7



We now see that a negative energy E (i.e. a bound system) gives an ex-
pression for p following the expression for an ellipse in the above list of
properties for conic sections (by defining a = µ̂m/(2|E|). Similarly a pos-
itive energy gives the expression for a hyperbola. We have shown that
the total energy of a system determines whether the trajectory will be
an ellipse (bound systems E < 0), hyperbola (unbound system E > 0)
or parabola (E = 0). We have just shown Kepler’s first law of motion,
stating that a bound planet follows an elliptical orbit. In the exercises
you will also show Kepler’s second and third law using Newton’s law of
gravitation.

4 The elliptical orbit

We have seen that the elliptical orbit may be written in terms of the
distance r as

r =
a(1 − e2)

1 + e cos f
.

In figure (4) we show the meaning of the different variables involved in
this equation:

• a is the semimajor axis

• b is the semiminor axis

• e is the eccentricity defined as e =
√

1 − (b/a)2

• m1 is located in the principal focus

• the point on the ellipse closest to the principal focus is called peri-
helion

• the point on the ellipse farthest from the principal focus is called
aphelion

• the angle f is called the true anomaly

Figure 4: The ellipse.
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The eccentricity is defined using the ratio b/a. When the semimajor and
semiminor axis are equal, e = 0 and the orbit is a circle. When the
semimajor axis is much larger than the semiminor axis, e → 1.

5 Center of mass system

In the previous section we showed that seen from the rest frame of one
of the masses in a two-body system, the other mass follows an elliptical
/ parabolic / hyperbolic trajectory. How does this look from a frame
of reference which is not at rest with respect to one of the masses? We
know that both masses m1 and m2 are moving due to the gravitational
attraction from the other. If we observe a distant star-planet system, how
does the planet and the star move with respect to each other? We have
only shown that sitting on either the planet or the star, the other body
will follow an elliptical orbit.

An elegant way to describe the full motion of the two-body system (or in
fact an N-body system) is to introduce center of mass coordinates. The

center of mass position ~R is located at a point on the line between the
two masses m1 and m2. If the two masses are equal, the center of mass
position is located exactly halfway between the two masses. If one mass
is larger than the other, the center of mass is located closer to the more
massive body. The center of mass is a weighted mean of the position of
the two masses:

~R =
m1

M
~r1 +

m2

M
~r2, (12)

where M = m1 + m2. We can similarly define the center of mass for an
N-body system as

~R =
N∑

i=1

mi

M
~ri, (13)

where M =
∑

i mi and the sum is over all N masses in the system. New-
ton’s second law for one object in the system is

~fi = mi~̈ri

where ~fi is the total force on object i. Summing over all bodies in the
system, we obtain Newton’s second law for the full N-body system

~F =
N∑

i=1

mi~̈ri, (14)

where ~F is the total force on all masses in the system. We may divide the
total force on all masses into one contribution from internal forces between
masses and one contribution from external forces,

~F =
∑

i

∑
j 6=i

~fij + ~Fext,
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Figure 5: Info-figure: A diagram of the trajectory that enabled NASA’s
Voyager 2 spacecraft to tour all the four gas giants and achieve a large
enough velocity to escape our solar system. Celestial mechanics obviously
played an integral part in the extremely careful planning that was needed
in order to carry out the probe’s ambitious tour of the outer solar system.
The planetary flybys not only allowed for close-up observations of the
planets and their moons, but also accelerated the probe so that it could
reach the next object. In 2012 Voyager 2 was at a distance of roughly
100 AU from the Sun, traveling outward at around 3.3 AU per year. It is
expected to keep transmitting weak radio messages until at least 2025.
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Figure 6: The center of mass system: The center of mass (CM) is indicated
by a small point. The two masses m1 and m2 orbit the center of mass in
elliptical orbits with the center of mass in one focus of both ellipses. The
center of mass vectors ~r CM

1 and ~r CM
2 start at the center of mass and point

to the masses.

where ~fij is the gravitational force on mass i from mass j. Newton’s third

law implies that the sum over all internal forces vanish (~fij = −~fji). The
right side of equation (14) can be written in terms of the center of mass
coordinate using equation (13) as

N∑
i=1

mi~̈ri = M ~̈R,

giving

M ~̈R = ~Fext.

(Check that you followed this deduction!). If there are no external forces

on the system of masses (~Fext = 0), this equation tells us that the center
of mass position does not accelerate, i.e. if the center of mass position is
at rest it will remain at rest, if the center of mass position moves with a
given velocity it will keep moving with this velocity. We may thus divide
the motion of a system of masses into the motion of the center of mass and
the motion of the individual masses with respect to the center of mass.

We now return to the two-body system assuming that no external forces
act on the system. The center of mass moves with constant velocity and
we decide to deduce the motion of the masses with respect to the center
of mass system, i.e. the rest frame of the center of mass. We will thus be
sitting at the center of mass which we define as the origin of our coordinate
system, looking at the motion of the two masses. When we know the
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motion of the two masses with respect to the center of mass, we know the
full motion of the system since we already know the motion of the center
of mass position.

Since we take the origin at the center of mass location, we have ~R = 0.
Using equation (12) we get

0 =
m1

M
~r CM

1 +
m2

M
~r CM

2 ,

where CM denotes position in the center of mass frame (see figure 6).
Combining this equation with the fact that ~r = ~r2 − ~r1 = ~r CM

2 − ~r CM
1 we

obtain

~r CM
1 = − µ̂

m1

~r, (15)

~r CM
2 =

µ̂

m2

~r, (16)

The reduced mass µ̂ is defined as

µ̂ =
m1m2

m1 + m2

.

The relative motion of the masses with respect to the center of mass can
be expressed in terms of ~r CM

1 and ~r CM
2 as a function of time, or as we have

seen before, as a function of angle f . We already know the motion of one
mass with respect to the other,

|~r | =
p

1 + e cos f
.

Inserting this into equations (15) and (16) we obtain

|~r CM
1 | =

µ̂

m1

|~r | =
µ̂p

m1(1 + e cos f)

|~r CM
2 | =

µ̂

m2

|~r | =
µ̂p

m2(1 + e cos f)

For a bound system we thus have

|~r CM
1 | =

µ̂
m1

a(1 − e2)

1 + e cos f
≡ a1(1 − e2)

1 + e cos f

|~r CM
2 | =

µ̂
m2

a(1 − e2)

1 + e cos f
≡ a2(1 − e2)

1 + e cos f

We see from these equations that for a gravitationally bound system, both
masses move in elliptical orbits with the center of mass in one of the foci
(how do you see this?). The semimajor axis of these two masses are given
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by

a1 =
µ̂a

m1

,

a2 =
µ̂a

m2

,

a = a1 + a2

(check that you understand how these equations come about) where a1

and a2 are the semimajor axis of m1 and m2 respectively and a is the
semimajor axis of the elliptical orbit of one of the masses seen from the
rest frame of the other. Note that the larger the mass of a given body
with respect to the other, the smaller the ellipse. This is consistent with
our intuition: The more massive body is less affected by the same force
than is the less massive body. The Sun moves in an ellipse around the
center of mass which is much smaller than the elliptical orbit of the Earth.
Figure (6) shows the situation: the planet and the star orbit the common
center of mass situated in one common focus of both ellipses.

6 Problems

Problem 1 (20–45 min.)

The scope of this problem is to deduce Kepler’s second law. Kepler’s
second law can be written mathematically as

dA

dt
= constant,

i.e. that the area A swept out by the vector ~r per time interval is constant.
We will now show this step by step:

1. Show that the infinitesimal area dA swept out by the radius vector
~r for an infinitesimal movement dr and dθ is dA = 1

2
r2dθ.

2. Divide this expression by dt and you obtain an expression for dA/dt
in terms of the radius r and the tangential velocity vθ.

3. By looking back at the above derivations, you will see that the tan-
gential velocity can be expressed as vθ = h/r.

4. Show Kepler’s second law.

Problem 2 (20–45 min.)

The scope of this problem is to deduce Kepler’s third law. Again we will
solve this problem step by step:

1. In the previous problem we found an expression for dA/dt in terms
of a constant. Integrate this equation over a full period P and show
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that

P =
2πab

h

(Hint: the area of an ellipse is given by πab).

2. Use expressions for h and b found in the text to show that

P 2 =
4π2

G(m1 + m2)
a3 (17)

3. This expression obtained from Newtonian dynamics differs in an
important way from the original expression obtain empirically by
Kepler (equation 1). How? Why didn’t Kepler discover it?

Problem 3 (15–30 min.)

1. How can you measure the mass of a planet in the solar system by
observing the motion of one of its satellites? Assume that we know
only the semimajor axis and orbital period for the elliptical orbit
of the satellite around the planet. Hint 1: Kepler’s third law (the
exact version). Hint 2: You are allowed to make reasonable ap-
proximations.

2. Look up (using Internet or other sources) the semimajor axis and
orbital period of Jupiter’s moon Ganymede.

(a) Use these numbers to estimate the mass of Jupiter.

(b) Then look up the mass of Jupiter. How well did your esti-
mate fit? Is this an accurate method for computing planetary
masses?

(c) Which effects could cause discrepancies from the real value and
your estimated value?

Problem 4 (70–90 min.)

1. Show that the total energy of the two-body system in the center of
mass frame can be written as

E =
1

2
µ̂v2 − GMµ̂

r
,

where v = |d~r/dt| is the relative velocity between the two objects,
r = |~r | is their relative distance, µ̂ is the reduced mass and M ≡
m1 +m2 is the total mass. Hint: make the calculation in the center
of mass frame and use equation (15) and (16).

2. Show that the total angular momentum of the system in the center
of mass frame can be written

~P = µ̂~r × ~v,
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3. Looking at the two expressions you have found for energy and an-
gular momentum of the system seen from the center of mass frame:
Can you find an equivalent two-body problem with two masses m′

1

and m′
2 where the equations for energy and momentum will be of

the same form as the two equations which you have just derived?
What are m′

1 and m′
2? If you didn’t understand the question, here is

a rephrasing: If you were given these two equations without know-
ing anything else, which physical system would you say that the
describe?

Problem 5 (optional 30–45 min.)

1. At which points in the elliptical orbit (for which angels f) is the
velocity of a planet at maximum or minimum?

2. Using only the mass of the Sun, the semimajor axis and eccentricity
of Earth’s orbit (which you look up in Internet or elsewhere), can
you find an estimate of Earth’s velocity at aphelion and perihelion?

3. Look up the real maximum and minimum velocities of the Earth’s
velocity. How well do they compare to your estimate? What could
cause discrepancies between your estimated values and the real val-
ues?

4. Use Python (or Matlab or any other programming language) to plot
the variation in Earth’s velocity during one year.

Hint 1: Use one or some of the expressions for velocity found in section
(3) as well as expressions for p and h found in later sections (including the
above problems). Hint 2: You are allowed to make reasonable approxi-
mations.

Problem 6 (optional 10–30 min.)

1. Find our maximum and minimum distance to the center of mass of
the Earth-Sun system.

2. Find Sun’s maximum and minimum distance to the center of mass
of the Earth-Sun system.

3. How large are the latter distances compared to the radius of the
Sun?

Problem 7: Numerical solution to the 2-body/3-body problem

In this problem you are first going to solve the 2-body problem numerically
by a well-known numerical method. We will start by considering the ESA
satellite Mars Express which entered an orbit around Mars in December
2003 (http://www.esa.int/esaMI/Mars\_Express/index.html). The
goal of Mars Express is to map the surface of Mars with high resolution
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images. When Mars Express is at an altitude of 10107 km above the
surface of Mars with a velocity 1166 m/s (with respect to Mars), the
engines are turned off and the satellite has entered the orbit.

In this exercise we will use that the radius of Mars is 3400 km and the
mass of Mars is 6.4 × 1023 kg. Assume the weight of the Mars Express
spacecraft to be 1 ton.

1. (4–5 hours) A distance of 10107 km is far too large in order to
obtain high resolution images of the surface. Thus, the orbit of
Mars Express need to be very eccentric such that it is very close to
the surface of Mars each time it reaches perihelion. We will now
check this by calculating the orbit of Mars Express numerically. We
will introduce a fixed Cartesian coordinate system to describe the
motion of Mars and the satellite. Assume that at time t = 0 Mars
has position [x1 = 0, y1 = 0, z1 = 0] and Mars express has position
[x2 = 10107 + 3400 km, y2 = 0, z2 = 0] in this fixed coordinate
system (see Figure 8).

The velocity of Mars express is only in the positive y-direction at
this moment. In our fixed coordinate system, the initial velocity
vectors are therefore ~v1 = 0 (for Mars) and ~v2 = 1166 m

s
~j (for Mars

Express), where ~j is the unitvector along the y-axis. There is no
velocity component in the z-direction so we can consider the system
as a 2-dimensional system with movement in the (x, y)-plane.

Use Newton’s second law,

m
d2~r

dt2
= ~F ,

to solve the 2-body problem numerically. Use the Euler-Cromer
method for differential equations. Plot the trajectory of Mars Ex-
press. Do 105 calculations with timestep dt = 1 second. Is the result
what you would expect?
Hints - Write Newton’s second law in terms of the velocity vector.

m
d~v

dt
= ~F ⇒ m

(
d~vx

dt
~i +

d~vy

dt
~j

)
= Fx

~i + Fy
~j

Then we have the following relation between the change in the com-
ponents of the velocity vector and the components of the force vector;

dvx

dt
=

Fx

m

dvy

dt
=

Fy

m

These equations can be solved directly by the Euler-Cromer method
and the given initial conditions. For each timestep (use a for- or
while-loop), calculate the velocity vx/y(t + dt) (Euler’s method) and
the position x(t + dt), y(t + dt) (standard kinematics) for Mars and
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Figure 7: Info-figure: 433 Eros was the target of the first long-term, close-
up study of an asteroid. After a four year journey the NEAR-Shoemaker
space probe was inserted into orbit around the 33 km long, potato-shaped
asteroid in February 2000 and encircled it 230 times from various distances
before touching down on its surface. The primary scientific objective was
to return data on the composition, shape, internal mass distribution, and
magnetic field of Eros. Asteroids are a class of rocky small solar system
bodies that orbit the Sun, mostly in the asteroid belt between Mars and
Jupiter. They are of great interest to astronomers as they are leftover
material from when the solar system formed some 4.6 billion years ago..

Figure 8: Mars and Mars Express at time t = 0.
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the space craft (or even easier: use vectors). A good approach is to
make a function that calculates the gravitational force. From the
loop you send the previous timestep positiondata (4 values) to the
function which calculates and returns the components of the force (4
values, two for Mars and two for the space craft) with correct nega-
tive/positive sign. Collect the values in arrays and use the standard
python/scitools plot-command.

2. (60–90 min) Mars Express contained a small lander unit called
Beagle 2. Unfortunately contact was lost with Beagle 2 just after
it should have reached the surface. Here we will calculate the path
that Beagle 2 takes down to the surface (this is not the real path
that was taken). We will assume that the lander does not have any
engines and is thus moving under the influence of only two forces: the
force of gravity from Mars and the force of friction from the Martian
atmosphere. The friction will continously lower the altitude of the
orbit until the lander hits the surface of the planet. We will assume
the weight of the lander to be 100 kg.

We will now assume that Mars Express launches Beagle 2 when Mars
Express is at perihelion. We will assume that it adjusts the velocity
of Beagle 2 such that it has a velocity of 4000 m/s (with respect
to Mars) at this point. Thus we have 2-body problem as in the
previous exercise. At t = 0, the position of Mars and the lander is
[x1 = 0, y1 = 0, z1 = 0] and [x2 = −298 − 3400 km, y2 = 0, z2 = 0]
respectively (Figure 9). The initial velocity vector of the lander is
~v1 = −4000 m

s
~j with respect to Mars. Due to Mars’atmosphere a

force of friction acts on the lander which is always in the direction
opposite to the velocity vector. A simple model of this force is given
by

~f = −k~v,

where k = 0.00016 kg/s is the friction constant due to Mars’ at-
mosphere. We will assume this to have the same value for the full
orbit.

Plot the trajectory that the lander takes down to the surface of Mars.
Set dt = 1 second.

Hints - You can use most of the code from the previous exercise.
First, we write Newton’s second law in terms of the cartesian com-
ponents;

dvx

e
=

Fx + fx

m

dvy

dt
=

Fy + fy

m

(or use the vector from direcly if you prefer). The best approach is
to make one more function that calculates the force of friction with
the lander’s velocity components as arguments. In this problem you
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Figure 9: Mars and Beagle 2 at time t = 0.

should use a while-loop. For each evaluation, first call the gravita-
tional function (as before) and then the friction function. Remem-
ber to send the space craft’s velocity components from the previous
timestep. In the friction function, first calculate the total force F ,
and then (if you do not use vectors) the components Fx and Fy (use
simple trigonometry) with correct positive/negative-sign by check-
ing the sign of the velocity components. Then return the force com-
ponents to the loop. For each evaluation (in the while-loop) check
whether the spaceship has landed or not.

3. Use the trajectory of the previous exercise to check the landing site:
Was the lander supposed to study the ice of the Martian poles or the
rocks at the Martian equator? Use figure 9 to identify the position
of the poles with respect to the geometry of the problem (the result
does not have any relation with the objectives or landing site of the
real Beagle 2 space craft)

4. (90–120 min.) Finally, we will use our code to study the 3-body
problem. There is no analytical solution to the 3-body problem, so
in this case we are forced to use numerical calculations. The fact that
most problems in astrophysics consider systems with a huge number
of objects strongly underlines the fact that numerical solutions are
of great importance.

About half of all the stars are binary stars, two stars orbiting a
common center of mass. Binary star systems may also have planets
orbiting the two stars. Here we will look at one of many possible
shapes of orbits of such planets. We will consider a planet with the
mass identical to the mass of Mars. One of the stars has a mass
identical to the mass of the Sun (2× 1030 kg), the other has a mass
4 times that of the Sun.

The initial positions are [x1 = −1.5 AU, y1 = 0, z1 = 0] (for the
planet), [x2 = 0, y2 = 0, z2 = 0] (for the small star) and [x3 = 3 AU,
y3 = 0, z3 = 0] (for the large star) (Figure 3). The initial velocity
vectors are ~v1 = −1 km

s
~j (for the planet), ~v2 = 30 km

s
~j (for the small
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Figure 10: The binary star system with the planet at time t = 0.

star) and ~v3 = −7.5 km
s
~j (for the large star).

Plot the orbit of the planet and the two stars in the same figure.
Use timestep dt = 400 seconds and make 106 calculations. It should
now be clear why it is impossible to find an analytical solution to
the 3-body problem. Note that the solution is an approximation. If
you try to change the size and number of time steps you will get
slighly different orbits, small time steps cause numerical problems
and large time steps is too inaccurate. The given time step is a
good trade-off between the two problems but does not give a very
accurate solution. Accurate methods to solve this problem is outside
the scope of this course. Play around and try some other starting
positions and/or velocities.

Hints: There is really not much more code you need to add to the
previous code to solve this problem. Declare arrays and constants
for the three objects. In your for-/while-loop, calculate the total
force components for each object. Since we have a 3-body problem
we get two contributions to the total force for each object. In other
words, you will have to call the function of gravitation three times
for each time-evaluation. For each time step, first calculate the force
components between the planet and the small star, then the force
components between the planet and the large star, and finally the
force components between the small and the large star. Then you
sum up the contributions that belong to each object.

5. Look at the trajectory and try to imagine how the sky will look like
at different epochs. If we assume that the planet has chemical condi-
tions for life equal to those on earth, do you think it is probable that
life will evolve on this planet? Use your tracetory to give arguments.

20



AST1100 Lecture Notes

3 Extrasolar planets

1 Detecting extrasolar planets

Most models of star formation tell us that the formation of planets is a
common process. We expect most stars to have planets orbiting them.
Why then, has only a very few planets (about ten by fall 2010) around
other stars been seen directly? There are two main reasons for this:

1. The planet’s orbit is often close to the star. If the star is far away
from us, the angular distance between the star and the planet is so
small that the telescope cannot separate the two objects.

2. The light from the star is much brighter than the starlight reflected
from the planet. It is very difficult to detect a faint signal close to a
very bright source.

How large is the angular distance on the sky between Earth and Sun seen
from our closest star, Proxima Centauri 4.22 light years away? Look at
the geometry in figure 1. The distance r is 4.22 light years, the distance
Sun-Earth d is 150×106 km. Using the small angle formula from geometry
(and this is indeed a very small angle),

d = rθ

we find θ = 0.00021◦ (check!). In astrophysics we usually specify small
angles in terms of arcminutes and arcseconds, denoted ′ and ′′. There are
60 arcminutes in one degree and 60 arcseconds in one arcminute. Thus the
angular distance between Sun and Earth as seen from Proxima Centauri is
0.77′′. From the ground, the best resolution a normal telescope can reach
is 0.4′′ under very good atmospheric conditions (actually using so-called
adaptive optics better resolutions may be attained). This means that two
objects with a smaller angular distance on the sky cannot be separated
by the telescope. So the green men on a planet orbiting our nearest star
would just be able to see the Earth with the best telescopes under very
good atmospheric conditions (provided the atmosphere on this planet is
similar to the Earth’s)! The Hubble Space Telescope which is not limited
by the atmosphere can reach a resolution of 0.1′′. For the people on a
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Figure 1: The angular extension of a distant planet’s orbit around its star.

planet orbiting a star located 100 light years away from Earth, the angular
distance between the Earth and the Sun would be 0.03′′. From this planet,
our green friends would be unable to see the Earth using the Hubble Space
Telescope! A huge advance in optics and telescope technology is needed
in the future in order to resolve planets which are orbiting close to their
mother star.

Still, about 500 planets orbiting other stars have been detected (by fall
2010, but the number is now rapidly increasing after the launch of the
Kepler satellite in 2009 (http://kepler.nasa.gov/)). The reason for
this can be found in the previous lecture: In a star-planet system, the
planet and the star are orbiting their common center of mass. Thus, the
star is moving in an elliptical orbit. If the velocity of the star can be
measured, then a regular variation of the star’s velocity as it orbits the
center of mass should be detected. This is the way most of the extrasolar
planets have been discovered so far (this is also about to change with
Kepler which discovers extrasolar planets by eclipses which we will come
back to later)

One way to measure the velocity of a star is by the Doppler effect, that
electromagnetic waves (light) from the star change their wavelength de-
pending on whether the star is moving towards us or away from us. When
the star is approaching, we observe light with shorter wavelength, the
light is blueshifted. On the contrary, when the star is receding, the light is
redshifted. By measuring the displacement of spectral lines in the stellar
spectra (more details about this in a later lecture), we can measure veloc-
ities of stars by the impressive precision of 1 m/s, the walking speed of a
human being. In this way, even small variations in the star’s velocity can
be measured. Recall the formula:

Change in wavelength due to the Doppler effect

λ − λ0

λ0

=
vr

c
,

where λ is the observed wavelength and λ0 is the wavelength seen from
the rest frame of the object emitting the wave.

There is one drawback of this method: only radial velocity can be mea-
sured. Tangential velocity, movements perpendicular to the line of sight,
does not produce any Doppler effect. The orbital plane of a planet (which
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Figure 2: Info-figure: Artistic rendition of Kepler-35b, a Saturn-sized
planet orbiting a pair of Sun-like stars. The first confirmed detection
of a planet orbiting a main-sequence star other than the Sun was made
in 1995. Since then hundreds of exoplanets have been discovered; see
http://exoplanet.eu for a complete and up-to-date list. Astronomers em-
ploy several methods for finding exoplanets, e.g. the radial velocity or
Doppler method, the transit method, gravitational microlensing, astrom-
etry, pulsar timing, and even direct imaging. Recent surveys have shown
that planets around stars in the Milky Way are the rule rather than the
exception! Exoplanet research is one the hottest fields in astronomy to-
day.(M. Garlick)
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is the same as the orbital plane of the star) will have a random orien-
tation. We will therefore only be able to measure one component of the
star’s velocity, the radial velocity.

In figure 3 we have plotted the situation. The angle i is called the incli-
nation of the orbit. It is simply the angle between the line of sight and a
line perpendicular to the orbital plane (see figure 3). When the inclina-
tion i = 90◦, the plane of the orbit is aligned with the line of sight and
the velocity measured from the Doppler effect is the full velocity. For an
inclination i = 0◦, there is no radial component of the velocity and no
Doppler effect is seen. A regular variation in a star’s radial velocity could
be the sign of a planet orbiting it.

We will in the following assume circular orbits (i.e. the eccentricity e = 0).
This will make calculations easier, the distance from the center of mass a
is always the same and more importantly, the velocity v is the same for
all points in the orbit. In figure 4 we show how the radial velocity changes
during the orbit of the star around the center of mass. If the inclination
is i = 90◦, then the radial velocity vr equals the real velocity v in the
points B and D in the figure. For other inclinations, the radial velocity vr

in points B and D is given by

|vr| = v sin i. (1)

This is found by simple geometry, it is the component of the velocity
vector taken along the line of sight (do you see this?). Note: The velocity v
discussed here is the orbital velocity of the star, i.e. the velocity of the star
with respect to the center of mass. Normally the star/planet system, i.e.
the center of mass, has a (approximately) constant velocity with respect
to the observer. This velocity vpec is called the peculiar velocity and must
be subtracted in order to obtain the velocity with respect to the center of
mass. Recall from the previous lecture that the velocity of the star can
be decomposed into the velocity of the center of mass (peculiar velocity)
and the velocity of the star with respect to the center of mass (which is
the one we need).

2 Determining the mass of extrasolar plan-

ets

We know that Kepler’s third law (Newton’s version as you deduced it in
the exercises of the previous lectures) connects the orbital period P , the
semimajor axis a (radius in the case of a circular orbit) and mass m of
the planet/star (do you remember how?). From observations of the radial
velocity of a star we can determine the orbital period of the star/planet
system. Is there a way to combine this with Kepler’s laws in order to
obtain the mass of the planet? The goal of this section is to solve this
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Figure 3: Inclination: The angle between the line of sight and the normal
~N to the orbital plane is called the inclination i. The maximum radial
velocity of the star equals v sin i.

problem. We will deduce a way to determine the mass of an extrasolar
planet with as little information as possible.

In the following we will use m∗, a∗, v∗ for mass, radius of the orbit and
velocity of the star in its orbit around the center of mass. Similarly we will
use mp, ap and vp for the corresponding quantities regarding the planet.
The constant velocities may be expressed as,

v∗ =
2πa∗

P
vp =

2πap

P
. (2)

Note again that this is velocity with respect to center of mass, any peculiar
velocity has been subtracted. In the lecture notes for lecture 1-2, section
5, we found expressions for the position of the two bodies m1 and m2

taken in the center of mass frame, ~r CM
1 and ~r CM

2 . Before reading on, look
back at these lecture notes now and make sure you remember how these
expressions were obtained!

Did you check those lecture notes? Ok, then we can continue. Take these
masses to be the star and the planet. Using these expressions, we obtain
(check!)

|~r CM
∗ |

|~r CM
p |

=
mp

m∗
=

a∗

ap

,

where the expressions for the semimajor axes a1 and a2 from lecture 1–2
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Figure 4: The velocity curve of a star orbiting the common center of mass
with a planet. The points where the component of the velocity vector
along the line of sight is zero (A and C) as well as the points where the
radial component equals the full velocity (B and D) are indicated. In the
figure, we have assumed an inclination of 90◦.
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were used. Using equation (2), we also have that

a∗

ap

=
v∗
vp

=
v∗r/ sin i

vpr/ sin i
=

v∗r
vpr

,

where equation (1) was used. Note: Here, the radial velocities v∗r and vpr

refer to the velocity at the point B in figure 4, the point for which the
radial velocity is maximal. We may use these two equation to eliminate
the unknown velocity of the planet

vpr = v∗r
m∗

mp

. (3)

We will now return to Kepler’s third law,

m∗ + mp =
4π2a3

P 2G
,

where we have used the exact expression for Kepler’s third law, derived
in problem 2 in lecture notes 1–2. From section 5 in those notes, we also
had that

a = a∗ + ap,

the semimajor axis a (of the orbit of the planet seen from the star or vice
versa) equals the sum of the semimajor axes of the orbits of the planet
and star about the center of mass. We can now express these in terms of
velocities (equation 2)

a =
P

2π
(v∗ + vp).

Inserting this into Kepler’s third law, we have

m∗ + mp =
P

2πG
(v∗ + vp)

3.

Normally we are only able to measure radial velocities, not the absolute
velocity. We thus use equation (1) as well as equation (3) to obtain

m∗ + mp =
P

2πG

(v∗r + vpr)
3

sin3 i
=

Pv3
∗r

2πG sin3 i

(
1 +

m∗

mp

)3

.

Assuming that the star is much more massive than the planet (which is
normally the case, for instance mJupiter/mSun ∼ 10−3) we get

m∗ =
Pv3

∗r

2πG sin3 i

m3
∗

m3
p

,

which solved for the mass of the planet (which is the quantity we are
looking for) gives

mp sin i =
m

2/3
∗ v∗rP

1/3

(2πG)1/3
.
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Normally, the mass of the star is known from spectroscopic measurements.
The radial velocity of the star and the orbital period can both be inferred
from measurements of the Doppler effect. Thus, the expression mp sin i
can be calculated. Unfortunately, we normally do not know the inclination
angle i. Therefore, this approach for measuring the planet’s mass can only
put a lower limit on the mass. By setting i = 90◦ we find mmin

p . If the
inclination angle is smaller, then the mass is always greater than this lower
limit by a factor of 1/ sin i. In the next section however, we will discuss a
case in which we can actually know the inclination angle.

3 Measuring the radius and the density of

extrasolar planets

If the inclination is close to i ∼ 90◦, the planet passes in front of the stellar
disc and an eclipse occurs: The disc of the planet obscures a part of the
the light from the star. When looking at the light curve of the star, a
dip will occur with regular intervals corresponding to the orbital period.
In figure 5 we show a typical light curve. When the disc of the planet
enters the disc of the star, the light curve starts falling. When the entire
disc of the planet is inside the disc of the star, the light received from the
star is now constant but lower than before the eclipse. When the disc of
the planet starts to leave the disc of the star, the light curve starts rising
again. When such a light curve is observed for a star where a planet has
been detected with the radial velocity method described above, we know
that the inclination of the orbit is close to i = 90◦ and the mass estimate
above is now a reliable estimate of the planet’s mass rather than a lower
limit.

In these cases, where the effect of the eclipse can be seen, the radius of the
planet may also be measured. If we know the time of first contact (time
t0 in figure 5), the time when the disc of the planet has fully entered the
disc of the star (time t1) as well as the velocity of the planet with respect
to the star, we can measure the radius of the planet. If the radius of the
planet is Rp, then it took the disc of the planet with diameter 2Rp a time
t1− t0 to fully enter the disc of the star. The planet moves with a velocity
v∗ + vp with respect to the star (the velocity vp is only the velocity with
respect to the center of mass). Using simply that distance equals velocity
times interval, we have

2Rp = (v∗ + vp)(t1 − t0)

As we have seen, we can obtain t1 and t0 from the light curve. We can
also obtain the velocity of the planet (the velocity of the star is measured
directly by the Doppler effect) by using equation (3),

vp = v∗
m∗

mp

.
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Figure 5: The lower part of the figure shows a planet eclipsing a star. The
upper part shows a plot of the flux variation with time at the different
points during the eclipse. The moments at which the eclipse starts t = t0
and ends t = t3 as well as the moments when the full disc of the planet
enters t = t1 and leaves t = t2 the star are indicated.
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Here the mass of the planet mp has been calculated since we know that
the inclination is i ∼ 90◦. Thus, the radius Rp of the planet is easily
obtained. Combining the measured mass and radius of the planet we get
an estimate of the mean density

ρp =
mp

4/3πR3
p

.

We can use this to determine whether the detected planet is terrestrial
planet with a solid surface like the inner planets in the solar system, or a
gas planet consisting mainly of gas and liquids like the outer planets in our
solar system. The terrestrial planets in our solar system have densities of
order 4−5 times the density of water whereas the gas planets have densities
of order 0.7 − 1.7 times the density of water. If the detected planet is a
terrestrial planet, it could also have life.

Finally, note that also the radius R∗ of the observed star can be obtain by
the same method using the time it takes for the planet to cross the disc
of the star,

2R∗ = (v∗ + vp)(t2 − t0).

We have discussed two ways of discovering extrasolar planets,

• by measuring radial velocity

• by measuring the light curve

In the following problems you will also encounter a third way,

• by measuring tangential velocity

For very close stars, the tangential movement of the star due to its motion
in the orbit about the center of mass may be seen directly on the sky. The
velocity we measure in this manner is the projection of the total velocity
onto the plane perpendicular to the line of sight. There are two more
methods which will briefly be discussed in later lectures,

• by gravitational lensing

• by pulsar timing

4 Exercise to be presented on the black-

board: The atmosphere of extrasolar plan-

ets

In figure 7 we show observations of the radial velocity of a star over a large
period of time. We assume that these data is a collection of data from
several telescopes around the world. Real data contain several additional
complicated systematic effects which are not included in this figure. For
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Figure 6: Info-figure: This artist’s impression shows how the super-Earth
surrounding the star GJ1214 may look. The planet was discovered by
the transit method: the brightness of its host star decreased by a tiny
amount as the (unseen) planet crossed in front of it. Spectroscopic follow-
up observations, i.e. radial velocity measurements, were needed in order
to confirm the planetary nature of the object and to obtain its mass. The
planet is the second super-Earth (defined as a planet between one and ten
times the mass of the Earth) for which astronomers have determined the
mass and radius, giving vital clues about its structure. It is also the first
super-Earth around which an atmosphere has been found. The planet is
too hot to support life as we know it.(ESO/L. Calcada)
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instance, changes in the velocity of the Earth need to be corrected for in
velocity measurements. Here we assume that these corrections have al-
ready been made. Even if this plot does not show you all the complications
of real life, it does give an impression of how data from observations may
look like and how to use them to say something about extrasolar planets.
You see that this is not a smooth curve, several systematic effects as for
instance atmospheric instabilities give rise to what we call ’noise’.

1. Does this star move towards us or away from us? Use the figure to
give an estimate of the peculiar velocity.

2. Use the curve to find the maximum radial velocity vr∗ of the star
(with respect to the center of mass) and the orbital period of the
planet.

3. Spectroscopic measurements have shown the mass of the star to be
1.1 solar masses. Give an estimate of the lower bound for the mass
of the planet. The result should be given in Jupiter masses.

4. In figure 8 we show a part of the light curve (taken at the wavelength
600 nm) of the star for the same period of time. Explain how this
curve helps you to obtain the real mass of the planet, not only the
lower bound, and give an estimate of this mass.

5. Use the light curve to find the radius of the planet. Note: there are
5 minutes between each cross in the plot.

6. In figure 9 we show a part of the light curve taken at the same time
as the previous light curve but at a wavelength 1450 nm which is an
absorption line of water vapor. Use the figure to determine if this
planet may have an atmosphere containing water vapor and estimate
the thickness of the atmosphere.
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Figure 7: Velocity measurements of a star

Figure 8: The light curve of a star at 600 nm. There are 5 minutes between
each cross.
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Figure 9: The light curve of a star at 1450 nm. There are 5 minutes
between each cross.
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5 Problems

Problem 1 (10–20 min.)

1. The precision in measurements of radial velocities by the Doppler
effect is currently 1 m/s. Can a Jupiter like planet orbiting a star
similar to the Sun at a distance from the mother star equal to the
Sun-Jupiter distance be detected? (Use www or other sources to find
the mass of Jupiter, the Sun and the distance between the two which
are the only data you are allowed to use).

2. What about an Earth like planet in orbit at a distance 1 AU from
the same star?

3. Using the radial velocity method, is it easier to detect planets orbit-
ing closer or further away from the star?

4. In what distance range (from the mother star) does an Earth like
planet need to be in order to be detected with the radial velocity
method? (Again use a star similar to the Sun). Compare with the
distance Sun-Mercury, the planet in our solar system which is closest
to the Sun.

Problem 2 (20–30 min.)

For stars which are sufficiently close to us, their motion in the orbit about
a common center of mass with a planet may be detected by observing the
motion of the star directly on the sky. A star will typically move with
a constant velocity in some given direction with respect to the Sun. If
the star has a planet it will also be wobbling up and down (see figure
10). We will now study the necessary conditions which might enable the
observation of this effect.

1. The Hubble Space Telescope (HST) has a resolution of about 0.1′′.
How close to us does a star similar to the Sun with a Jupiter like
planet (at the distance from the mother start equal to the Sun-
Jupiter distance) need to be in order for the HST to observe the
tangential wobbling of the star?

2. What about an Earth like planet at the distance of one AU from the
same star?

3. The closest star to the Sun is Proxima Centauri at a distance of 4.22
l.y.. How massive does a planet orbiting Proxima Centauri at the
distance of 1 AU need to be in order for the tangential wobbling of
the star to be observed?

4. What about a planet at the distance from Proxima Centauri equal
to the Sun-Jupiter distance?

5. If we can measure the tangential velocity (perpendicular to the line
of sight) component of a star, we can get an estimate of the mass of
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Figure 10: The transversal wobbling of a nearby star due to its orbital
motion about the common center of mass with a planet. The angular
extension of the orbit is indicated by two small arrows.

the planet not only a lower limit. Show that the exact mass of the
planet can be expressed as (for any inclination i)

mp =

(
m2

∗P

2πG

)1/3

vt∗

(tangential velocity vt∗ here is measured when the radial velocity is
zero).

Problem 3 (45 min.–1 hour)

In figure 11 we show observations of the radial velocity of a star over a
large period of time. We assume that these data is a collection of data
from several telescopes around the world. Real data contain several addi-
tional complicated systematic effects which are not included in this figure.
For instance, changes in the velocity of the Earth need to be corrected for
in velocity measurements. Here we assume that these corrections have al-
ready been made. Even if this plot does not show you all the complications
of real life, it does give an impression of how data from observations may
look like and how to use them to say something about extrasolar planets.
You see that this is not a smooth curve, several systematic effects as for
instance atmospheric instabilities give rise to what we call ’noise’.

1. This plot shows a curve with a wave like shape, can you explain the
shape of the curve?

2. Use this plot to give an estimate for the the ’perculiar velocity’ of the
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Figure 11: Velocity measurements of a star

star. ’Peculiar velocity’ is a term used to describe the average motion
of the star with respect to us, not taking into account oscillations
from planets.

3. Use the curve to find the maximum radial velocity vr∗ of the star
(with respect to the center of mass) and the orbital period of the
planet.

4. Spectroscopic measurements have shown the mass of the star to be
1.3 solar masses. Give an estimate of the lower bound for the mass
of the planet. The result should be given in Jupiter masses.

5. In figure 12 we show the light curve of the star for the same period
of time. Explain how this curve helps you to obtain the real mass of
the planet, not only the lower bound, and give an estimate of this
mass.

6. In figure 13 we have zoomed in on a part of the light curve. Use the
figure to give a rough estimate of the density of the planet.

7. Is this a gas planet or a terrestrial planet?
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Figure 12: The light curve of a star.

Figure 13: The light curve of a star.

18



Problem 4 (4–5 hours)

At the following link you will find some files containing simulated velocity
and light curves of 10 stars:

http://folk.uio.no/frodekh/AST1100/lecture3/

Real data contain several additional complicated systematic effects which
are not included in these files. For instance, changes in the velocity of
the Earth need to be corrected for in velocity measurements. Here we
assume that these corrections have already been made. Even if these
data do not show you all the complications of real life, they will still give
an impression of how data from observations may look like and how to
use them to say something about extrasolar planets. Each file contains
three rows, the first row is the time of observation, counted in seconds
from the first observation which we define to be t = 0. We assume that
these data is a collection of data from several telescopes around the world,
studying these stars intensively for a given period of time (the length of
this observing period is different for each star). The second row gives the
observed wavelength λ of a spectral line (The Hα line) at λ0 = 656.3 nm
in nm = 10−9 m. You need to use the Doppler formula to obtain radial
velocities yourself. You will see that this is not a smooth curve, several
systematic effects, i.e. atmospheric instabilities give rise to what we call
’noise’. As you will see, this noise makes exact observations difficult. The
third row shows the measured flux relative to the maximum flux for the
given star. Again, also these data contain noise.

Use Python, Matlab or other software/programming languages to solve
the following problems:

1. Estimate the peculiar velocity (the mean velocity of the star with
respect to Earth) for each of the 10 stars, taking the mean of the
velocity over all observations. Plot the velocity curves (subtract
the mean velocity from the velocity for each observation) and light
curves for the ten stars. Which of the stars appear to have a planet
orbiting? Which of these planets are eclipsing their mother star?

2. The mass of the stars have been measured by other means, these are
0.8, 2.8, 0.5, 0.5, 1.8, 0.7, 1.6, 2.1, 7 and 8 solar masses for star 0-9
respectively. Can you, by looking at the velocity curves (velocity as
a function of time), find the lower limit for the mass of the planet
for the stars where you detected a planet. Find the numbers for the
periods and max radial velocities by eye.

3. If you, by looking at the light curve, discovered that some of the
planets are actually eclipsing the star, can you also estimate the
radius and density of these planets. Again, you will need to estimate
the time of eclipse by eye. Does any of the planets you have detected
have the possibilities for life (at least in the form that we know life)?

4. You have made estimates of mass and radius using ’by-eye’ mea-
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surements. This is not the way that astrophysicists are working.
Often, advanced signal processing methods are employed in order
to get the best possible estimates. Also, scientific measurements al-
ways have uncertainties. The detailed methods for analyzing these
data are outside the scope of this course, but you will encounter
this in more advanced courses in astrophysics. Here we will show
you a simple way to obtain estimates which are more exact than the
’by-eye’ observations above. A similar method will be used in other
problems in this course. The key to this method is the method of
’least squares’. We will use this to obtain more accurate periods
and max radial velocities from the velocity measurements. We will
model the velocity curves as cosine curves in the following way,

vmodel
r (t) = vr cos(

2π

P
(t − t0)), (4)

where vmodel
r (t) is the theoretical model of the radial velocity as a

function of time, vr is the maximal radial velocity, P is the period
of revolution and t0 is some point for which the radial velocity is
maximal (you see that if t = t0 then the cosine term equals one).
The unknown parameters in this model are vr, P and t0. Only the
two first parameters, vr and P , are necessary in order to estimate
the mass of the planet, but we need to estimate all three in order
to have consistent estimates of the first two. We will now try to
find a combination of these three parameters, such that equation
(4) gives a good description of the data. To do this, you need to
write a computer code which calculates the difference, or actually
the square of the difference, between the data and your model for a
large number of values for the three parameters t0, P and vr. You
need to define a function (an array in you computer) ∆(t0, P, vr)
given as

∆(t0, P, vr) =

t=t0+P∑
t=t0

(vdata
r (t) − vmodel

r (t, t0, P, vr))
2

This function gives you the difference between the data and your
model for different values of t0, P and vr. What you want to find
is the function which best fits your data, that is, the model which
gives the minimum difference between the data and your model.
You simply want to find for which parameters t0, P and vr that the
function ∆(t0, P, vr) is minimal. How do you find the parameters
t0, P and vr which minimize ∆? In this case it is quite easy, try to
follow these steps:

(a) Choose one of your stars which clearly has a planet orbiting.

(b) Look at your data: You know that for t = t0, the velocity is
maximal. Look for the first peak in the curve and define a range
in time around this curve for which you think that the exact
peak must be. Define a minimum possible t0 and a maximum
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possible t0 (being sure that exact peak is somewhere between
these two values). Then define a set of, say 20 (you choose
what is more convenient in each case) values of t0 which are
equally spaced between the minimum and maximum value.

(c) Do the same for vr, try to find a minimum and a maximum
vr which are such that you see by eye that the real exact vr is
between these two values. Then divide this range into about
20 equally spaced values (maybe less depending on the case).

(d) Do the same thing for the period. Look at the time difference
between two peaks, and find a set of possible periods.

(e) Now, calculate the function ∆ for all these values of t0, P and
vr which you have found to be possible values. Find which of
these about 203 combination of values which gave the smallest
∆, thus the smallest difference between data and model. These
values are now your best estimates of P and vr.

(f) Calculate the mass of the planet again with these values for
P and vr and compare with your previous ’by-eye’ estimates.
How well did you do in estimating ’by-eye’?

(g) Now repeat the procedure to estimate the exact mass for two
other stars with planets and compare again with your ’by-eye’
estimates.

21



AST1100 Lecture Notes

4 Stellar orbits and dark matter

1 Using Kepler’s laws for stars orbiting the

center of a galaxy

We will now use Kepler’s laws of gravitation on much larger scales. We
will study stars orbiting the center of galaxies. Our own galaxy, the Milky
Way, contains more than 2 × 1011 stars. The diameter of the galaxy is
about 100 000 light years and the Sun is located at a distance of about
25 000 light years from the center. It takes about 226 million years for
the Sun to make one full revolution in its orbit.

The Milky way is a spiral galaxy where most of the stars are located in
the galactic disc surrounding the center of the galaxy and in the galactic
bulge, a spherical region about 10 000 light years in diameter located at
the center (see figure 1). We will apply Newton/Kepler’s laws to stars
in the outer parts of a galaxy, at a large distance r from the center. For
these stars, we may approximate the gravitational forces acting on the
star to be the force of a mass M(r) (which equals the total mass inside
the orbit of the star) located at the center of the galaxy. Kepler’s third
law (Newton’s modified version of it, see lecture notes 1–2, problem 2) for
this star reads

P 2 =
4π2

G(M(r) + m∗)
r3,

where we assume a circular orbit with radius r. The orbital velocity of
the star at distance r is (check!)

v(r) =
2πr

P
=

2πr√
4π2r3/(G(M(r) + m∗))

≈
√

GM(r)

r
. (1)

where we used Kepler’s third law and assumed that the total mass inside
the star’s orbit is much larger than the mass of the star, M(r) � m∗.

The density of stars is seen to fall off rapidly away from the center of the
galaxy. Observations indicate that the stellar density decreases as 1/r3.5.
Therefore, for stars in the outer parts of the galactic disc, we may consider
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Figure 1: Dimensions of a typical galaxy.

the amount of mass inside the orbit to be the total mass M of the galaxy
(since there is not much more material outside the star’s orbit which can
contribute to the total mass), that is to say M(r) → M asymptotically
for large values of r. In this case expression (1) above can be written as

v(r) =

√
GM

r
.

Thus, we expect the orbital velocity of stars in the outer parts of the
galaxy to fall off as 1/

√
r with the distance r from the galactic center.

By measuring the Doppler effect, we can estimate the velocity of stars
orbiting a galaxy at different distances r from the center. A huge number
of observations show that the galactic rotation curve, the curve showing
the orbital velocity as a function of distance r, is almost flat for large r for
a large number of galaxies. Instead of falling off as v ∝ 1/

√
r , the orbital

velocity turns out not to decrease with distance (see figure 3). This came
as a big surprise when it was first discovered. There must be something
wrong about the assumptions made above. The main assumption made in
our derivation was that the density of stars traces the mass density in the
galaxy. Using the fact that the density of stars falls of rapidly for large r,
we also assumed the total mass density to fall off similarly. This is true if
the only constituents of the galaxy were stars. However, if there are other
objects in the galaxy which do not emit light, which we cannot see, and
which has a different distribution of mass than the stars, the assumptions
leading to the ∝ 1/

√
r relation does not hold. One could explain this

discrepancy between theory and data if there was an additional invisible
matter component, dark matter.
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Figure 2: Info-figure: A galaxy is a massive, gravitationally bound system
that consists of stars, stellar remnants, an interstellar medium of gas and
dust, and a poorly understood component called dark matter which ac-
counts for around 90% of the mass of most galaxies. Examples of galaxies
range from dwarfs with as few as ten million (107) stars to giants with a
hundred trillion (1014) stars. There are numerous ways to classify these
objects, but as far as apparent shape is concerned, there are three main
types: spiral galaxies, elliptical galaxies, and irregular galaxies. Pictured
above are NGC 6384 (spiral), NGC 1132 (elliptical), and the Large Magel-
lanic Cloud (irregular).(top: NASA, ESA, and the Hubble Heritage Team;
lower left: ESA/Hubble & NASA; lower right: R. Gendler)
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Figure 3: Models of galactic rotation curves. The lower curve is the curve
expected from Kepler’s laws (taking into account that M(r) is a function
of r for lower radii), the upper curve is a model for the observed velocity
curve.

2 Modeling the mass density field of a galaxy

Assuming that there is indeed an unknown matter component which has
a different density profile ρ(r) than the stars, we could make an attempt
to find out how this dark matter is distributed in the galaxy. How can we
map the matter distribution of invisible matter? We can simply look at
its gravitational effect on visible matter. We have already seen traces of
such an effect: the invisible matter changes the rotation curve of stars in
the galaxies. Is there a way to use the rotation curve v(r) to estimate the
density profile ρ(r) of the dark matter?

In the lack of better models, we will assume the distribution of dark matter
to be spherically symmetric about the center of the galaxy. Thus, we
assume that the density can be written as a function of distance r to
the center only. We know that the total mass dM of a spherical shell of
infinitesimal thickness dr at a distance r from the center of the galaxy can
be written as

dM = 4πr2ρ(r)dr.

The surface of a spherical shell at distance r is 4πr2, the volume of the
same shell of thickness dr is 4πr2dr. Multiplying with the density ρ(r) we
obtain the total mass of the shell given in the previous expression. We
now look back at equation (1), write it in terms of M(r) and take the
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derivative of M(r) with respect to r

dM

dr
=

v(r)2

G
.

Here we used the fact that v(r) (taken from observations) seems indepen-
dent of r such that dv/dr ≈ 0 for large distances from the center. This
is strictly not a necessary assumption, for any power law in the velocity
v(r) ∝ rn (where n is an arbitrary index) this expression holds up to a
constant factor (check by taking the derivative of M(r) setting v(r) ∝ rn).
Thus, the following expressions will be valid for more general forms of the
velocity v(r) and is therefore also valid for more central regions.

We now have two equations for dM/dr. Setting these two expressions
equal, we obtain

ρ(r) =
v(r)2

4πGr2
. (2)

This is a simple expression for the matter density in the galaxy at distance
r from the center, expressed only in terms of the rotational velocity v(r).
Note that for spherical symmetry, this expression holds also for small
values of r. One could think that for stars close to the center, the matter
outside the star’s orbit would also contribute to the gravitational forces.
However, it can be shown that the gravitational forces from a spherical
shell add to zero everywhere inside this shell. Thus, simply by a set of
Doppler measurements of orbital velocities at different distances r in the
galaxy we are able to obtain a map of the matter distribution in terms of
the density profile ρ(r).

Recall that observations have shown the rotation curve v(r) to be almost
flat, i.e. independent of r, at large distances from the center. Looking at
equation (2) this means that the total density in the galaxy falls of like
1/r2. Recall also that observations have shown the density of stars to fall
off as 1/r3.5. Thus, the dark matter density falls of much more slowly than
the density of visible matter. The dark matter is not concentrated in the
center to the same degree as visible matter, it is distributed more evenly
throughout the galaxy. Moreover, the density ρ(r) which we obtain by
this method is the total density, i.e.

ρ(r) = ρ(r)LM + ρ(r)DM ,

the sum of the density due to luminous matter (LM) and the density due
to dark matter (DM). Since the density of luminous matter falls off much
more rapidly ρ(r)LM ∝ r−3.5 than the dark matter, the outer parts of the
galaxy must be dominated by dark matter.

What happens to the mass density as we approach the center? Doesn’t it
diverge using ρ(r) ∝ r−2? Actually, it turns out that the rotation curve
v(r) ∝ r close to the center. Looking at equation (2) we see that this
implies a constant density in the central regions of the galaxy. A density

5



profile which fits the observed density well over most distances r is given
by

ρ(r) =
ρ0

1 + (r/R)2
, (3)

where ρ0 and R are constants which are estimated from data and which
vary from galaxy to galaxy. For small radii, r � R we obtain ρ = ρ0 =
constant. For large radii r � R we get back ρ(r) ∝ r−2.

Before you proceed, check that you now understand well why we think that
dark matter must exist! Can you imagine other possible explanations of
the strange galactic rotation curves without including dark matter?

3 What is dark matter?

Possible candidates to dark matter:

• planets and asteroids?

• brown dwarf stars?

• something else?

From our own solar system, it seems that the total matter is dominated
by the Sun, not the planets. The total mass of the planets only make up
about one part in 1000 of the total mass of the solar system. If this is
the normal ratio, and we have no reason to believe otherwise, then the
planets can only explain a tiny part of the invisible matter. Brown dwarf
stars (more about these in later lectures) are stars which had too little
mass to start nuclear reactions. They emit thermal radiation, but their
temperature is low and they are therefore almost invisible. Observations
of brown dwarfs in our neighborhood indicates that the number density is
not large enough to fully explain the galactic rotation curves.

We are left with the last option, ’something else’. Actually, different
kinds of observations in other areas of astrophysics (we will come back
to this in the lectures on cosmology) indicate that the dark matter must
be non-baryonic matter. Non-baryonic matter is matter which does not
(or only very weakly) interact with normal visible matter in any other
way than through gravitational interactions. From particle physics, we
learn that the particle of light, the photon, is always created as a result
of electromagnetic interactions. Non-baryonic matter does not take part
in electromagnetic interactions (or only very weakly), only gravitational
interactions, and can therefore not emit or absorb photons. Theoretical
particle physics has predicted the existence of such non-baryonic matter
for decades but it has been impossible to make any direct detections in
the laboratory since these particles hardly interact with normal matter.
We can only see them through their gravitational interaction on huge
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Figure 4: Info-figure: Composite image of the galaxy cluster 1E 0657-56,
better known as the ”Bullet cluster”, which was formed after the collision
of two large clusters of galaxies. Hot gas detected in X-rays is seen as
two pink clumps in the image and contains most of the ”normal” (i.e.
baryonic) matter in the two clusters. The bullet-shaped clump on the
right is the hot gas from one cluster, which passed through the hot gas
from the other cluster during the collision. An optical image shows the
galaxies in orange and white. The blue areas are where astronomers find
most of the mass in the clusters, determined using the gravitational lensing
effect where light from distant objects is distorted by intervening matter.
Most of the matter in the clusters (blue) is clearly separate from the
normal matter (pink), giving direct evidence that nearly all of the matter
in the clusters is dark. (X-ray: NASA/CXC/CfA/M.Markevitch et al.;
optical: NASA/STScI; Magellan/U.Arizona/D. Clowe et al.; lensing map:
NASA/STScI; ESO WFI; Magellan/U.Arizona/D. Clowe et al.)
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structures in the universe, such as galaxies. This is one example of how one
can use astrophysics, the science of the largest structures in the universe, to
study particle physics, the science of the smallest particles in the universe.

Dark matter is usually divided into two groups,

1. warm dark matter (WDM): light particles with high velocities (v ≈
c)

2. cold dark matter (CDM): massive particles with low velocities (v �
c)

One candidate to WDM are the neutrinos although these actually belong
to baryonic matter. Neutrinos are very light particles which are associated
with the electron and other elementary particles. When an electron is
created in a particle collision, a neutrino is normally created in the same
collision. Until a few years ago, neutrinos were thought not to have mass.
Only some recent experiments have detected that they have a small but
non-zero mass. Neutrinos, even if they are baryons, react only weakly
with other particles and are therefore difficult to detect. One has been
able to show that neutrinos do not make an important contribution to
the total mass of galaxies. Nowadays, the most popular theories for dark
matter are mostly theories based on CDM. Many different candidates for
CDM exist in theoretical particle physics, but so far one has not been
able to identify which particle might be responsible for the dark matter
in galaxies.

Dark matter has been seen in many other types of observations as well. For
instance by observing the orbits of galaxies about a common center of mass
in clusters of galaxies, a similar effect has been seen: the orbits cannot be
explained by including only the visible matter. Traces of dark matter has
also been seen through observations of gravitational lenses (which we will
come back to later) as well as other observations in cosmology.

4 Problems

Problem 1 (45 min.–1 hour)

Two galaxies with similar sizes orbit a common center of mass. Their
distance from us has been estimated to 220 Mpc (one parsec=3.26 light
years, 1 Mpc=106 parsecs). Their angular separation on the sky has been
measured to 3.1′. Their velocity with respect to the center of mass has
been estimated to v = 100 km/s for both galaxies, one approaching us the
other receding. Assume circular orbits. Assume that the velocities of the
galaxies only have a radial component such that the given velocity is the
full velocity of the galaxies.

1. What is the mass of the galaxies? (Hint: here you need to go back
to the two-body problem. First calculate the radius of the orbit and
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then use equations from the lectures on celestial mechanics. You
will need to play a little with the equations.)

2. The size of the galaxies indicate that they contain roughly the same
number of stars as the Milky Way, about 2×1011. The average mass
of a star in these two galaxies equals the mass of the Sun. What is
the total mass of one of the galaxies counting only the mass of the
stars?

3. What is the ratio of dark matter to luminous matter in these galax-
ies? This is an idealize example, but the result gives you the real
average ratio of dark to luminous matter observed in the universe.

Problem 2 (90 min.–2 hours)

In the following link I have put three files with simulated (idealized) data
taken from three galaxies:

http://folk.uio.no/frodekh/AST1100/lecture4/

Each file contains two columns, the first column is the position where
the observation is made given as the angular distance (in arcseconds)
from the center of the galaxy. These data are observations of the so-
called 21 cm line. Neutral hydrogen emits radiation with wavelength 21.2
cm from a so-called forbidden transition in the atom. Radiation at this
wavelength indicates the presence of neutral hydrogen. Galaxies usually
contain huge clouds of neutral hydrogen. Measurements of the rotation
curves of galaxies are usually made measuring the Doppler effect on this
line at different distances from the center. The second column in these
files is just that, the received wavelength of the 21.2 cm radiation. Again
you need to use the Doppler formula to translate these wavelengths into
radial velocities.

The three galaxies are estimated to be at distances 32, 4 and 12 Mpc. The
total velocity of the galaxies has been measured to be 120, −75 and 442
km/s (positive velocity for galaxy moving away from us).

1. Make a plot of the rotation curves of these galaxies, plot distance in
kpc and velocity in km/s.

2. Make a plot of the density profile of the galaxies (assuming that
equation (2) is valid for all distances), again plot the distance in kpc
and the density in solar masses per parsec3.

3. Finally, assume that the density profile of these galaxies roughly
follow equation (3). Find ρ0 and R for these three galaxies (in the
units you used for plotting). Hints: Looking at the expression for
the density, it is easy to read ρ0 off directly from the plot of the
density profile. Having ρ0 you can obtain R by trial and error,
overplotting the density profile equation (3) for different R on top
of your profile obtained from the data.
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5 The virial theorem

1 The virial theorem

We have seen that we can solve the equation of motion for the two-body
problem analytically and thus obtain expressions describing the future
motion of these two bodies. Adding just one body to this problem, the
situation is considerably more difficult. There is no general analytic so-
lution to the three-body problem. In astrophysics we are often interested
in systems of millions or billions of bodies. For instance, a galaxy may
have more than 2 × 1011 stars. To describe exactly the motion of stars
in galaxies we would need to solve the 2 × 1011-body problem. This is of
course impossible, but we can still make some simple considerations about
the general properties of such a system. We have already encountered one
such general property, the fact that the center of mass maintains a con-
stant velocity in the absence of external forces. A second law governing a
large system is the virial theorem which we will deduce here. The virial
theorem has a wide range of applications in astrophysics, from the for-
mation of stars (in which case the bodies of the system are the atoms of
the gas) to the formation of the largest structures in the universe, the
clusters of galaxies. We will then apply the virial theorem to some of
these problems in the coming lectures. Here we will show how to prove
the theorem.

The virial theorem is a relation between the total kinetic energy and the
total potential energy of a system in equilibrium. We will come back to
the exact definition of the equilibrium state at the end of the proof.

We will consider a system of N particles (or bodies) with mass mi, position
vector ~ri, velocity vector ~vi and momentum ~pi = mi~vi (see figure 1). We
will take the origin of our system to be the center of mass for reasons
which we will see at the end. For this system, the total moment of inertia
is given by (remember from your mechanics classes?)

I =
N∑

i=1

mi|~ri|2 =
N∑

i=1

mi~ri · ~ri.
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Figure 1: The N-body system.

In mechanics one usually takes the moment of intertia with respect to a
given axis, here we take the moment of intertia with respect to the origin.
The time derivative of the moment of inertia is called the virial,

Q =
1

2

dI

dt
=

N∑
i=1

~pi · ~ri.

To deduce the virial theorem we need to take the time derivative of the
virial

dQ

dt
=

N∑
i=1

d~pi

dt
· ~ri +

N∑
i=1

~pi · ~vi,

where Newton’s second law gives

d~pi/dt = ~Fi

~Fi being the sum of all forces acting on particle i. We may write this as

dQ

dt
=

N∑
i=1

~Fi · ~ri +
N∑

i=1

miv
2
i ,

where the last term may be expressed in terms of the total kinetic energy
of the system K =

∑
i 1/2miv

2
i

dQ

dt
=

N∑
i=1

~Fi · ~ri + 2K. (1)

We will now try to simplify the first term on the right hand side. If no
external forces work on the system and the only force which acts on a
given particle is the gravitational force from all the other particles, we can
write

N∑
i=1

~Fi · ~ri =
N∑

i=1

∑
j 6=i

~fij · ~ri,

where ~fij is the gravitational force on particle i from particle j. The
last sum is a sum over all particles j except particle j = i. The double
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sum thus expresses a sum over all possible combinations of two particles
i and j, except the combination where i = j. We may view this as an
N × N matrix where we sum over all elements ij in the matrix, except
the diagonal elements ii. We divide this sum into two parts separated by
the diagonal (see figure 2),

N∑
i=1

~Fi · ~ri =
N∑

i=1

∑
j<i

~fij · ~ri︸ ︷︷ ︸
≡A

+
N∑

i=1

∑
j>i

~fij · ~ri︸ ︷︷ ︸
≡B

We now rewrite the sum B as

B =
N∑

i=1

∑
j>i

~fij · ~ri =
N∑

j=1

∑
i<j

~fij · ~ri,

where the sums have been interchanged (you can easily convince yourself
that this is the same sum by looking at the matrix in figure 2). We can
also interchange the name of the indices i and j (this is just renaming the
indices, nothing else)

B =
N∑

i=1

∑
j<i

~fji · ~rj.

From Newton’s third law, we have ~fij = −~fji,

B = −
N∑

i=1

∑
j<i

~fij · ~rj.

Totally, we have,

N∑
i=1

~Fi ·~ri = A+B =
N∑

i=1

∑
j<i

~fij ·~ri −
N∑

i=1

∑
j<i

~fij ·~rj =
N∑

i=1

∑
j<i

~fij · (~ri −~rj).

(2)

Did you follow all steps so far? Here, the force ~fij is nothing else than the
well known gravitational force,

~fij = G
mimj

r3
ij

(~rj − ~ri),

where rij = |~rj −~ri|. Note that the force points in the direction of particle
j. Inserting this into equation (2) gives

N∑
i=1

~Fi · ~ri = −
N∑

i=1

∑
j<i

G
mimj

r3
ij

r2
ij =

N∑
i=1

∑
j<i

Uij,

where Uij is the gravitational potential energy between particle i and j.
This sum is the total potential energy of the system (do you see this?),
the sum of the potential between all possible pairs of particles (note that
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Figure 2: The matrix visualizing the summation

one pair of particle should be counted only once, this is why there is a
j < i in the latter sum). Thus, we have obtained an expressions for the
two terms in equation (1) expressing the time derivative of the virial

dQ

dt
= U + 2K.

Finally we will use the equilibrium condition. We will take the mean value
of this expression over a long period of time,

〈dQ

dt
〉 = 〈U〉 + 2〈K〉,

where

〈〉 = lim
τ→∞

1

τ

∫ τ

0

dt.

For the term on the left hand side, we find

lim
τ→∞

1

τ

∫ τ

0

dQ

dt
dt = lim

τ→∞

Q(τ) − Q(0)

τ
≡ 0,

for a system in equilibrium. The last equality here is the definition of the
equilibrium state in which the system needs to be for the virial theorem
to hold: the mean value of the time derivative of the virial must go to
zero. In order for this to be fulfilled, the quantities Q(τ) and Q(0) need to
have finite values. If, for instance, the system is bound and the particles
go in regular orbits, the virial Q will oscillate regularly between two finite
values. In this case, the last expression above will go to zero as τ → ∞.
If Q had not been limited, which could happen for a system which is not
bound, then Q could attain large values with time and it would not be
clear that this expression would approach zero as τ → ∞. Using the
above equation and the equilibrium condition we see that a bound system
in equilibrium obeys

The Virial Theorem

〈K〉 = −1

2
〈U〉.

In order to obtain 〈K〉 and 〈U〉 we need to take the average of the kinetic
and potential energy over a long time period. In the case of the solar
system, this is easy: The orbits are periodic so it suffices to take the
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average over the longest orbital period. Please note that we have done the
calculations in the center of mass frame. If we did it from a different frame
of reference, our system of particles would move at a constant speed with
respect to us and the distance to the system would increase indefinitely.
All the distances would grow to infinity and the time derivative of the
virial would not go to zero.

Averaging a system over a long time period may be equal to averaging the
system over the ensemble. This is the ergodic hypothesis. Mathematically
it can be written as

lim
τ→∞

1

τ

∫ τ

0

dt → lim
N→∞

1

N

N∑
i=1

.

If a bound system has a huge number of particles (N → ∞), it is equivalent
to seeing the system over a long period of time (τ → ∞). Thus, we can
apply the virial theorem to a galaxy by taking the mean of the kinetic and
potential energy of all stars in the galaxy in a given instant. According to
the ergodic hypothesis, it is not necessary in this case to take the mean
of the kinetic and potential energy over a very long period of time. Since
the time scales for changes for such huge systems is very long, it is much
easier to simply take the average over all stars. The ergodic theorem thus
says that we can replace the mean value from being a time average to be
an average over all bodies in the system.

2 Applying the virial theorem to a collaps-

ing cloud of gas

To show the power of the virial theorem we will apply it to a system
with very many particles and show how properties of this complex system
may be calculated. In the exercises you will find two more examples of
applications of the virial theorem to problems of a very different nature.
The example presented in this section is also an appetiser for the lectures
on stellar evolution coming later.

Before the advent of the theory of relativity, the source of the energy
that powers stars was sought. One suggestion was that the stellar energy
was gravitational energy that is being radiated away as the cloud of gas
retracts. A star starts out as a huge cloud of gas which starts collapsing
due to its own force of gravity. Gas falls towards the center of the cloud
and releases gravitational energy in the form of electromagnetic radiation
as it falls. As long as the cloud keeps collapsing, energy is radiated away
and could possibly explain the energy production in stars. To check if
this is a plausible explanation, we will need to calculate the total energy,
kinetic plus potential, that the star could possibly radiate away during
its collapse and compare this with the energy output from the Sun. To
calculate the total energy of such a cloud, we need to invoke the virial
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theorem. A collapsing cloud of gas is a bound many-body system and the
virial theorem should apply.

We will assume that the cloud is spherically symmetric with radius R and
mass M . We need to calculate the total energy, kinetic plus potential, of
such a cloud. Thanks to the virial theorem, it suffices to calculate only
the potential energy. The total energy is given by

E = K + U = −1

2
U + U =

1

2
U,

where K is kinetic energy and U is potential energy. Using the virial
theorem K = −U/2, we replace K by U and obtain an expression for
the total energy given only in terms of the total potential energy. I have
skipped time average here since this is a system with very many particles
and we can use the ergodic hypothesis and simply sum over all particles.

We see that if we are able to calculate the total potential energy of the
cloud, we would also obtain the total mechanical energy (kinetic+potential).
To obtain the total potential energy, we will start by considering the po-
tential du of a tiny particle of mass dm inside the cloud at a distance r
from the center. We have learned (see the lectures on dark matter) that
the gravitational forces from a spherical shell of matter add to zero inside
this shell. Thus we need only to consider the gravitational attraction on
the mass dm from the sphere of matter inside the position of the mass.
This is a sphere of radius r with mass M(r). Being a sphere, Newton’s
law of gravitation applies as if it were a point mass located at the center
with mass M(r). Thus the potential energy between the particle dm and
the rest of the cloud (the part inside the particle) is

du = −G
M(r)dm

r
.

We integrate this equation over all masses dm in the shell of thickness dr
at distance r from the center. We assume that the mass density in the
shell is given by ρ(r). We then obtain the potential energy dU between
the shell and the spherical mass M(r) inside the shell.

dU = −G
M(r)4πr2ρ(r)dr

r
.

To obtain the total potential energy U, we need to integrate this expression
over all radii r out to the edge of the cloud at r = R,

U = −4πG

∫ R

0

M(r)ρ(r)r dr.

We would generally need to know the density ρ(r) in order to obtain M(r)
and to integrate this equation. The scope here is to obtain an approximate
expression giving us an idea about the mass and radius dependence of the
energy and to obtain an order of magnitude estimate. For this purpose,
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we assume that the density is constant with a value equal to the mean
density of the cloud,

ρ =
M

(4/3)πR3
.

This gives M(r) = (4/3)πr3ρ and we can integrate the equation

U = −4πG

(
M

(4/3)πR3

)2

(4/3)π

∫ R

0

r4 dr,

U = −3GM2

5R
.

From the virial theorem, the total energy is then (check!)

E =
1

2
U = −3GM2

10R
.

This is the total energy of a cloud of gas with mass M and radius R. The
energy that the Sun has radiated away during its lifetime can be written
as

Eradiated = E(bigR) − E(R�),

where ’big R’ refers to the radius of the cloud when it started collapsing
and R� is the current radius of the Sun. The total energy of the cloud
goes as ∝ 1/R, so for the initial cloud this quantity can be approximated
to zero. Thus we are left with

Eradiated =
3GM2

�

10R�
,

where M� is the mass of the Sun. Inserting numbers for the mass and
radius of the Sun we obtain Eradiated ≈ 1.1 × 1041J . Assuming that the
Sun has been radiating with the same luminosity L� (dE/dt) during its
full lifetime, we can calculate the age of the Sun,

∆t =
Eradiated

L�
≈ 107years.

If gravitational collapse was indeed the source of solar energy, the Sun
couldn’t have lived longer than about 10 millions years. Several geological
findings have shown that the Earth and therefore also the Sun has existed
for about 500 times as long. Thus using the virial theorem we have shown
(using some assumptions) that gravitational collapse cannot satisfactory
explain the generation of energy in the Sun.
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3 Problems

Problem 1 (10–20 min.)

In a way we can look at the virial theorem as a generalization of Kepler’s
third law to a many-body system. Show that for the two-body problem,
the virial theorem is identical to Kepler’s third law in the Newtonian form
(as deduced in the exercises in lecture notes 1–2). Assume circular orbits.
Start with the virial theorem, insert expressions for the energies and show
Kepler’s third law. (You won’t get more help here. . . ).

Problem 2 (2–2.5 hours)

Fritz Zwicky was the first to note that there is some missing matter in the
universe. In 1933, several years before the discovery of the flat rotation
curves in the galaxies, he used the virial theorem to calculate the mass of
galaxies in the Coma Cluster. A cluster of galaxies is a cluster of a few
hundred galaxies orbiting a common center of mass. The Coma Cluster is
one of our neighbouring clusters of galaxies. He found that the mass of the
Coma Cluster calculated using the virial theorem was much larger than
the mass expected from the visible luminous matter. In this problem we
will try to follow his example and estimate the mass of galaxies in a cluster
of galaxies. We will consider a simulated cluster of about 100 galaxies. We
will assume that the cluster consists of these 100 brightest galaxies and
assume that the remaining galaxies are too small to affect our calculations
significantly.

1. Looking in the telescope we see that the cluster is spherical, the
galaxies are evenly distributed inside a spherical volume. The dis-
tance to the cluster is 85 Mpc. You observe the radius of the cluster
to be 32′. What is the radius of the cluster in Mpc?

2. All galaxies in the cluster appear to be very similar to the Milky Way,
both in the number of stars and the type of stars. The galaxies look
so similar to each other that we can assume that all the galaxies
have the same mass m. We know that the Milky Way has about
2 × 1011 stars. Assuming that the mean mass of a star equals the
mass of the Sun, what is the estimated total luminous mass m of
these galaxies?

3. Use the virial theorem to show that the mass m of a galaxy in the
cluster can be written as

m =

∑N
i=1 v2

i

G
∑N

i=1

∑
j>i 1/rij

,

where rij is the distance between galaxy i and galaxy j and vi is the
velocity of galaxy i with respect to the center of mass.
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Figure 3: Info-figure: Fritz Zwicky was the first to use the virial theorem
to infer the existence of unseen matter, which he referred to as ”dunkle
Materie” dark matter. He used the theorem in 1933 to calculate the
mass of the Coma cluster of galaxies (aka. Abell 1656) and found that it
was much larger than the mass expected from the luminous matter. The
cluster contains more than one thousand galaxies, most of them ellipticals.
It lies in the constellation of Coma Berenices, at a mean distance of roughly
100 Mpc. The central region is dominated by two giant elliptical galaxies,
which are easily spotted in the above image. The bright blue-white source
above the center is a foreground star in our own galaxy. (Figure: J. Misti)
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4. You will find a file with data for each of the galaxies here:

http://folk.uio.no/frodekh/AST1100/lecture5/galaxies.txt

The first column in the file is the observed angular distance (in arc-
minutes) from the center of the cluster along an x-axis. The second
column in the file is the observed angular distance (in arcminutes)
from the center of the cluster along an y-axis. (the x-y coordinate
system is chosen with an arbitrary orientation on the plane of ob-
servation (which is perpendicular to the line of sight)). The third
column is the measured distance to the galaxy (from Earth) in Mpc.
The fourth column is the position of the spectral line at 21.2 cm for
the given galaxy in units of m.

(a) Using these data, what is the radial velocity of the cluster with
respect to us? Remember that the velocity of a galaxy can be
written as

v(gal) = v(cluster) + v(rel),

where v(gal) is the total velocity of the galaxy with respect
to us, v(cluster) is the velocity of the cluster (of the center of
mass of the cluster) with respect to us and v(rel) is the relative
velocity of a galaxy with respect to the center of mass of the
cluster. The relative velocities with respect to the center of
mass are random, so for a large number of galaxies the mean

1

N

N∑
i=1

vi(rel) → 0

goes to zero.

(b) Make a plot showing how this cluster appears in the telescope:
draw the x-y axes (using arcminutes as units on the axes) and
make a dot at the position for each galaxy. Remember that in
Python you can plot for instance a circle at each data point by
using plot(x,y,’o’).

(c) Use these data and the expression above for the mass of a galaxy
from the virial theorem to obtain a minimum estimate of the
total mass of a galaxy in the cluster. How does it compare to
the estimate you obtained for luminous matter above? Hint
1: To make the double sum in Python you can construct two
FOR-loops, one over the index i and one over the index j.
Inside the two FOR-loops, you add the expression inside the
sum for indices i and j to the final result. Hint 2: To find the
distance between two galaxies i and j, it is convenient to find
the x, y and z coordinates of each galaxy in meters.

(d) Your measured velocities are based on the Doppler effect and
are therefore radial velocities. Because the inclinations of the
velocities with the line of sight is not 90◦, your estimate is a
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minimum estimate of the mass. We will now use the fact that
you have many galaxies and that you know that the orienta-
tion is random to get a more exact estimate. As a first step
you will need to find the mean of sin2 i (where i is inclination)
taken over many galaxies with random orientations: What is
the expected mean value taken over many galaxies of the ex-
pression sin2 i? We assume that the inclination is random (with
a uniform distribution). Remember that the mean value of a
function f(x) is defined statistically by

〈f(x)〉 =

∫
dxf(x)P (x)∫

dxP (x)
,

where P (x) is the statistical distribution, i.e. the probability
of having a value x. In this case, the distribution is uniform,
meaning that there is an equal probability for getting any value
of the inclination i. We may thus set P (x) = 1. The integration
in this general expression is done over all possible values of x.

(e) Can you use this to obtain a more accurate estimate of the
mass?
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AST1100 Lecture Notes

6 Electromagnetic radiation

1 The electromagnetic spectrum

To obtain information about the distant universe we have the following
sources available:

1. electromagnetic waves at many different wavelengths.

2. cosmic rays: high energy elementary particles arriving from super-
novae or black holes in our galaxy as well as from distant galaxies.
The galactic magnetic field changes the direction of these particles
making it impossible to determine the incoming direction and there-
fore the exact sources of the rays.

3. neutrinos: these extremely light elementary particles interact very
rarely with other particles and can therefore arrive from huge dis-
tances without being scattered on the way. This property also makes
neutrinos very difficult to detect and therefore a source of infor-
mation with limited usefulness until better detection methods are
discovered.

4. gravitational waves: spacetime distortions traveling through space
as a wave. These are predicted by Einstein’s general theory of rela-
tivity. Gravitational waves have still not been directly detected, but
experiments are on their way.

Of these sources, electromagnetic waves is by far the most important.
Practical problems limit the amount of information we can obtain from
other sources with current technology. Since electromagnetic radiation is
almost the only source which we use to get information about the distant
universe, it is of high importance in astrophysics to know the processes
which produce this kind of radiation. Here we will discuss some of the most
important processes along with some discussion on how the radiation from
these different processes is used to obtain information about the universe.
Some important types of radiation are

• thermal radiation: the thermal motion of atoms produces electro-
magnetic radiation at all wavelengths. For a black body (see later),
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Figure 1: A diagram of the electromagnetic spectrum, showing various
properties across the range of frequencies and wavelengths. The spectrum
is a continuum, but is often divided into the following main regions of
decreasing wavelength and increasing energy: radio, microwave, infrared,
visible, ultraviolet, X-ray, and gamma-ray. Note that the Earth’s atmo-
sphere is transparent only to visible light, a part of the radio spectrum
and a few narrow wavelength intervals in the infrared, thus limiting the
types of celestial objects and astrophysical processes that can be studied
using ground-based telescopes. (Figure:Wikipedia)
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the radiation emitted at a given frequency is distributed according
to Planck’s law of radiation.

• synchrotron radiation: radiation produced by energetic charged
particles accelerated in a magnetic field. This process emits elec-
tromagnetic radiation at different wavelengths depending on the en-
ergies involved in the process. Our own galaxy emits synchrotron
radiation as radio waves due to the acceleration of cosmic ray elec-
trons in the magnetic field of the galaxy.

• Bremsstrahlung: radiation produced by the ’braking’ of a charged
particle, usually an electron, by another charged particle, typically a
proton or atomic nucleus. Due to electromagnetic forces from ions,
electrons are deflected, and hence accelerated, producing electro-
magnetic radiation at all wavelengths. The space between galax-
ies in the clusters of galaxies is called the intergalactic medium
(IGM). It contains a very hot plasma of electrons and ions emit-
ting brehmsstralung mainly as X-rays. These X-rays constitute an
important source of information about distant clusters of galaxies.

• 21 cm radiation: Neutral hydrogen emits radiation with wave-
length 21 cm due to a so-called spin-flip: The quantum spin of the
electron and proton may change direction such that the spin vec-
tors go from having their orientation in the same direction to having
their orientation in opposite directions. In this process, the total
energy of the atom decreases and the energy difference between the
two states is emitted as 21 cm radiation. This is a so-called for-
bidden transition, meaning that it occurs very rarely. For a single
atom one would on average need to wait about 10 millions years for
the process to occur. However, in huge clouds of gas the number of
hydrogen atoms is so large that the intensity of 21 cm radiation can
be quiet large even for such a rare process.

2 Solid angles

Before embarking on the properties of radiation, we will first introduce a
new concept which will be widely used: the solid angle. The solid angle
is a generalization of the concept of an angle from one to two dimensions.
Looking at figure 3, we see that an angle measured in radians is simply a
distance ∆s taken along the rim of the unity circle

θ = ∆s.

To convince you about this, remember that the circumference of the unity
circle, the full distance taken around the circle, is 2π. Now, the solid angle
is measured in units of steradians, for short sr, and is a part of the area
of the surface of the unit sphere as seen in figure 4. Thus,

Ω = ∆A.
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Figure 2: Info-figure: The Milky Way band observed in several wavelength
regions (ultraviolet light is missing, though). The development of new
detectors and, in particular, space telescopes has enabled us to study the
universe at all wavelengths. We can now learn about celestial objects and
physical processes that were completely unknown to astronomers only a
few decades ago.(Figure: NASA)

Figure 3: The angle measured in radians is defined as the length taken
along the rim of the unit circle.
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Figure 4: The solid angle measured in steradians is defined as the area
taken on the surface of the unit sphere.

The solid angle corresponding to the full unit sphere is then 4π sr which
is the full area of the surface of the unit sphere. If we imagine a source of
radiation in the center of the unit sphere, the solid angle can be used to
describe the amount of radiation going in a certain direction as the energy
transported per steradian. This is widely used in the study of radiative
processes in stars.

3 Black body radiation

Thermal radiation is emitted from an object of temperature T because of
the thermal motion of atoms at this temperature. Black body radiation
is thermal radiation from a black body. A black body is defined as a
body which absorbs all radiation it receives, no radiation is reflected or
can pass through. Many objects in astrophysics are close to being a black
body, a star is a typical example. For a black body, an expression for the
intensity of the thermal radiation as a function of wavelength/frequency
can be obtained analytically. A black body emits thermal radiation at all
frequencies, but which frequency has the largest intensity depends on the
temperature of the black body. To calculate the distribution of radiation
per frequency quantum physics is needed. We will therefore not make the
calculation here (you will come to this in physics courses later), but rather
state the result:

Planck’s law of radiation

B(ν) =
2hν3

c2

1

ehν/(kT ) − 1
.

where ν is the frequency, T is the temperature of the black body, h is
Planck’s constant and k is the Boltzmann constant.

The quantity B(ν) is intensity defined such that

∆E = B(ν) cos θ∆ν∆A∆Ω∆t (1)
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is the small energy passing through a small area ∆A into a small solid
angle ∆Ω (see figure 5) per small time interval ∆t in the small frequency
range [ν, ν + ∆ν]. Intensity is measured in units of W/m2/sr/Hz. Here
the factor cos θ comes from the fact that energy per solid angle per area is
lower by a factor cos θ for an observer making an angle θ with the normal
to the area emitting radiation. Example: Imagine you have a light bulb
which emits black body radiation at a certain temperature. You set up
a wall between you and the light bulb and let light pass only through a
small hole in the wall of area ∆A = 0.1 mm2. Just around the hole you
construct a unit sphere and put a detector at an angle θ = 30◦ with a
line orthogonal to the wall. The detector occupies about 1/1000 of the
unit sphere and thus absorbes light from ∆Ω = 4π/1000 sr. Finally, the
detector contains a material which only absorbes and measures radiation
in the wavelenght range 600–600.1 nm , such that ∆ν = 0.1 nm. The
energy that the detector measures from the light during a period of 10−3s
is then:

∆E = B(600 nm)× cos(30◦)× 0.1 mm2 × (4π/1000) sr× 0.1 nm× 10−3 s

In reality, the definition is made when we let all ∆ be infinitesimally small,
such that the definition reads

dE = B(ν) cos θ dν dA dΩ dt (2)

When we use differentials instead of finite differences ∆, we can use in-
tegrals to obtain the energy over large intervals in area, frequency, solid
angle or time.

Note that in order to write Planck’s law in terms of wavelength λ instead
of frequency ν one can not simply replace ν = c/λ. B(ν) is defined
in terms of differentials, so we need to take these into account. When
changing from frequency to wavelength, the energy must be the same, we
are only changing variables, not the physics. Using that the energy ∆E
is the same, we get from equation 2 that B(ν)dν = −B(λ)dλ (the minus
sign comes from the fact that λ and ν increase in opposite directions,

Figure 5: Intensity is the energy of radiation passing through area dA into
a solid angle dΩ per time, per wavelength.
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λ + |δλ| → ν − |δν|). We can write

B(ν)dν = −B(ν)
dν

dλ
dλ ≡ B(λ)dλ,

We therefore obtain

B(λ) = −B(ν)
dν

dλ
= −B(ν)

(
− c

λ2

)
=

2hc2

λ5

1

ehc/(kTλ) − 1
.

Figure (6) shows the intensity as a function of wavelength for black bodies
with different temperature T . We see that the wavelength of maximum
intensity is different for different temperatures. We can use the position of
this peak to determine the temperature of a black body. We can find an
analytical expression for the position of the peak by setting the derivative
of Planck’s law equal to zero,

dB(λ)

dλ
= 0

In the exercises you will show that the result gives:

Wien’s displacement law

Tλmax = 2.9 × 10−3 Km.

Another way to obtain the temperature of a black body is by taking the
area under the Planck curve, i.e. by integrating Planck’s law over all wave-
lengths. This area is also different for different temperatures T . Integrat-
ing this over all solid angles dΩ and frequencies dν, we obtain an expression
for the flux, energy per time per area,

F =
dE

dAdt
.

The integral can be written as (here we are just integrating equation (2)
over dν and dΩ)

F =

∫ ∞

0

dν

∫
dΩB(ν) cos θ.

Using that dΩ = dφ sin θdθ = −dφ(d cos θ) and substituting u = hν/kT ,
we get

F =

∫ 2π

0

dφ

∫ 1

0

d cos θ cos θ

∫
dν

2hν3

c2

1

ehν/(kT ) − 1

=
2k4T 4π

h3c2

∫
u3du

eu − 1

=
2πk4T 4

h3c2
ζ(4)︸︷︷︸
π4/90

Γ(4)︸︷︷︸
3!

=
2π5k4

15h3c2︸ ︷︷ ︸
≡σ

T 4.
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Figure 6: Planck’s law for different black body temperatures.

Here the solution of the u-integral can be found in tables of integrals
expressed in terms of ζ, the Riemann zeta-function and Γ, the gamma-
function, both of which can be found in tables of mathematical functions.
The final result is thus:

Stefan-Boltzmann law
The flux emitted from a black body is proportional to the temperature to
the fourth power.

F = σT 4,

where σ is a constant.

We see that we have two ways of measuring the temperature of a star, by
looking for the wavelength were the intensity is maximal, or by measuring
the energy per area integrated over all wavelengths. If a star had been a
black body, these two temperatures would have agreed. However, a star
is not a perfect black body. A star has different temperatures at different
depths in the star’s atmosphere. At different wavelengths we receive ra-
diation from different depths and the final radiation is a combination of
Planck radiation at several temperatures. Since the intensity as a function
of wavelength is not a perfect Planck curve at a fixed temperature T , the
two ways of measuring the temperature will also disagree,

• From Wien’s displacement law, we get the color temperature, T =
constant/λmax.

• From Stefan-Boltzmann’s law we get the effective temperature, T =
(F/σ)1/4.
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The first temperature is called the color temperature since it shows for
which wavelength the radiation has it’s maximal intensity and hence which
color the star appears to have. The second temperature is based on the
total energy emitted.

We have so far introduced two measures for the energy of electromagnetic
radiation:

Intensity

I(ν) =
dE

cosθ dν dAdΩ dt

energy received per frequency, per area, per solid angle and per time.

Flux (or total flux)

F =
dE

dAdt

total energy received per area and per time.

You will now soon meet the following expressions:

Flux per frequency

F (ν) =
dE

dA dt dν

total energy received per area, per time and per frequency.

Luminosity

L =
dE

dt

total energy received per unit of time.

Luminosity per frequency

L(ν) =
dE

dt dν

total energy received per frequency per time.

You will soon see more uses of all these expressions in practise, but it is
already now a good idea to memorize the meaning of intensity, flux and
luminosity.

4 Spectral lines

When looking at the spectra of stars you will discover that they have
thin dark lines at some specific wavelengths. Something has obscured
the radiation at these wavelengths. When the radiation leaves the stellar
surface it passes through the stellar atmosphere which contains several
atoms/ions absorbing the radiation at specific wavelengths corresponding
to energy gaps in the atoms. According to Bohr’s model of the atom, the
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electrons in the atom may only take certain energy levels E0, E1, E2, ....
The electron cannot have an energy between these levels. This means that
when a photon with energy E = hν hits an atom, the electron can only
absorb the energy of the photon if the energy hν corresponds exactly to
the difference between two energy levels ∆E = Ei−Ej. Only in this case is
the photon absorbed and the electron is excited to a higher energy level in
the atom. Photons which do not have the correct energy will pass the atom
without being absorbed. For this reason, only radiation at frequency ν
with photon energy E = hν corresponding to the difference in the energy
level of the atoms in the stellar atmosphere will be absorbed. We will
thus have dark lines in the spectra at the wavelengths corresponding to
the energy gaps in the atoms in the stellar atmosphere (see figure 7).
By studying the position of these dark lines, the absorption lines, in the
spectra we get information about which elements are present in the stellar
atmosphere.

The opposite effect also takes place. In the hotter parts of the stellar
atmospheres, electrons are excited to higher energy levels due to collisions
with other atoms. An electron can only stay in an excited energy level
for a limited amount of time after which it spontaneously returns to the
lowest energy level, emitting the energy difference as a photon. In these
cases we will see bright lines, emission lines, in the stellar spectra at the
wavelength corresponding to the energy difference, hν = ∆E (see figure
8).

The exact energy levels in the atoms and thus the wavelengths of the
absorption and emission lines can be calculated using quantum physics,
or they can be measured in the laboratory. However, the actual wavelength
where the spectral line is found in a stellar spectra may differ from the
predicted value. One reason for this could be the Doppler effect. If the star
has a non-zero radial velocity with respect to the Earth, all wavelengths
and hence also the position of the spectral lines will move according to

∆λ

λ0

=
vr

c
,

where vr is the radial component of the velocity. By taking the difference
∆λ between the observed wavelength (λ) and predicted wavelength (λ0)
of the spectral line, one can measure the velocity of a star or any other
astrophysical object as we discussed in the lecture on extrasolar planets.

Note that even if the star has zero-velocity with respect to Earth, we will
still measure a Doppler effect: The atoms in a gas are always moving in
random directions with different velocities. This thermal motion of the
atoms will induce a Doppler effect and hence a shift of the spectral line.
Since the atoms have a large number of different speeds and directions,
they will also induce a large number of different Doppler shifts ∆λ with
the result that a given spectral line is not seen as a narrow line exactly
at λ = λ0, but as a sum of several spectral lines with different Doppler
shifts ∆λ. The total effect of all these spectral lines is one single broad
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Figure 7: Formation of absorption lines.

Figure 8: Formation of emission lines.

Figure 9: Broadening of spectral lines due to thermal motion.
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Figure 10: Info-figure: By studying the spectra of objects in the universe,
you can do ”remote learning” that is, from millions and even billions
of light-years away you can figure out the object’s chemical composition
and velocity. a) If you look directly at a blackbody through a prism or a
modern spectrograph, you will see a continuous spectrum. b) Clouds of
gas absorb certain wavelengths of light. A continuous spectrum that hits
a cloud of cool gas will be partially absorbed. The transmitted spectrum
is called an absorption line spectrum, and is continuous except for the
wavelengths that were absorbed by the gas. c) Anything that absorbs
also emits. A cloud of cool gas that absorbs certain wavelengths from a
blackbody will emit exactly those wavelengths as the gas atoms de-excite.
If we look at the cloud without the blackbody in our line of sight, we will
see an emission line spectrum. (Figure: www.nthu.edu.tw)
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line centered at λ = λ0 (see figure 9). The width of the spectral line will
depend on the temperature of the gas, the higher the temperature, the
higher the dispersion in velocities and thus in shifts ∆λ of wavelengths.

We can estimate the width of a line by using some elementary thermo-
dynamics. From the above discussion, we see that we will need information
about the velocity of the atoms in the gas. For an ideal gas at temperature
T (measured in Kelvin K), the number density of atoms (number of atoms
per volume) in a given velocity range [v, v + dv] is given by the

Maxwell-Boltzmann distribution function

n(v)dv = n
( m

2πkT

)3/2

e−
1
2

mv2

kT 4πv2dv.

where m is the mass of the atoms in the gas and n is the total number
density of atoms per unit volume.

The meaning of the function is the following: if you insert the mass of
the atoms in the gas m, the temperature T of the gas and the number
density of the gas, n, then you can find out how many atoms in this gas
which have a velocity in the range [v, v + ∆v]. Say you need to find out
how many atoms have the velocity in the range between 2 and 2.01 km/s.
Then you insert v = 2 km/s to obtain n(v), and use ∆v = 0.01 km/s and
use n(v)∆v to find the total number of atoms with the given velocity per
volume.

In figure 11 we see two such distributions (what is plotted is n(v)/n),
both for hydrogen gas (the mass m has been set equal to the mass of
the hydrogen atom), solid line for temperature T = 6000 K which is the
temperature of the solar surface and dashed line for T = 373 K (which
equals 100 ◦C). We can thus use this distribution to find the percentage
of molecules in a gas which has a certain velocity. Now, before you read
on, go back and make sure that you understand well the meaning of the
function n(v).

We see that the peak of this distribution, i.e. the velocity that the largest
number of atoms have, depends on the temperature of the gas,

dn(v)

dv
= 0 → d

dv
(e−mv2/(2kT )v2) = 0.

Taking the derivative and setting it to zero gives the following relation

v2
max =

2kT

m
,

i.e. the most probable velocity for an atom in the gas is given by vmax

(Note: ’max’ does not mean highest velocity, but highest probability).
Most of the atoms will have a velocity close to this velocity (see again
figure 11).

The Maxwell-Boltzmann distribution only tells you the absolute value v
of the velocity. When measuring the Doppler effect, only the radial (along
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Figure 11: The Maxwell-Boltzmann distribution for hydrogen gas, show-
ing the percentage of molecules in the gas having a certain thermal velocity
at temperature T = 6000 K (solid line) and T = 373 K (dashed line).

the line of sight) component vr has any effect. The atoms in a gas have
random directions and therefore atoms with absolute velocity v will have
radial velocities scattered uniformly in the interval vr = [−v, v] (why this
interval? do you see it?). Since the most probable absolute velocity is
vmax the most probable radial velocity will be all velocities in the interval
vr = [−vmax, vmax] (you see that for instance vr = 0 is in this interval,
do you understand why vr = 0 is at as common as vr = vmax?). The
atoms with absolute velocity vmax will thus give Doppler shifts uniformly
distributed between ∆λ/λ0 = −vmax/c and ∆λ/λ0 = vmax/c. Few atoms
have a much higher velocity than vmax and therefore the spectral line
starts to weaken (less absorption/emission) after |∆λ|/λ0 = vmax/c. We
will thus see a spectral line with the width given roughly by

2∆λ =
2λ0

c
vmax =

2λ0

c

√
2kT

m
,

using the expression for vmax above. Do you see how this comes about?
Try to imagine how the spectral line will look like, thinking how atoms
at different velocities (above and below the most probable velocity) will
contribute to vr and thereby to the the spectral line. Try to make a rough
plot of how F (λ) for a spectral line should look like. Do not proceed until
you have made a suggestion for a plot for F (λ).

Of course, there are atoms at speeds other than vmax contributing to the
spectral line as well. The resulting spectral line is thus not seen as a sudden
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drop/rise in the flux at λ0 − ∆λ and a sudden rise/drop again at λ0 +
∆λ. Contributions from atoms at all different speeds make the spectral
line appear like a Gaussian function with strongest absorption/emission
at λ = λ0. We say that the line profile is Gaussian. More accurate
thermodynamic calculations show that we can approximate an absorption
line with the Gaussian function

F (λ) = Fcont(λ) + (Fmin − Fcont(λ))e−(λ−λ0)2/(2σ2), (3)

where Fcont(λ) is the continuum flux, the flux F (λ) which we would have
if the absorption line had been absent. The width of the line is defined
by σ. For a Gaussian curve one can write σ in terms of the Full Width
at Half the Maximum (FWHM, see figure 12) as σ = ∆λFWHM/

√
8 ln 2

where

∆λFWHM =
2λ0

c

√
2kT ln 2

m
,

We see that this exact line width differs from our approximate calcula-
tions above only by

√
ln 2. With this expression we also have a tool for

measuring the temperature of the elements in the stellar atmosphere.

5 Stellar magnitudes

The Greek astronomer Hipparchus (about 150 BC) made a catalogue of
about 850 stars and divided them into 6 magnitude classes, depending on
their brightness: the brightest stars were classified as magnitude 1 stars,
and the stars which could barely be seen were classified as magnitude
6. Little did Hipparchus know about the fact that more than 2000 years
later his system would still be used, and not only that, it would be used
by all astronomers in the (now much bigger) world. Whereas Hipparchus
classified the stars by eye, a more scientific method is used today. The eye
reacts to differences in the logarithm of the brightness. For this reason, the
magnitude classification is logarithmic in the flux that we receive (energy
received per area per time F = dE

dt dA
). For a difference in magnitude of 5

between two stars, the ratio of the fluxes of these stars is defined to be
exactly 100.

The flux we receive from a star depends on the distance to the star. We
define the luminosity L of a star to be the total energy emitted by the
whole star per unit time (dE/dt). This energy is radiated equally in all
directions. If we put a spherical shell around the star at distance r, the
energy received per unit area on this shell would equal the total energy L
divided by the surface area of the shell,

F =
L

4πr2
.
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Figure 12: A Gaussian profile: The horizontal line shows the Full Width
at Half Maximum (FWHM) which is where the curve has fallen to half
of its maximum value. This is an emission line, an absorption line would
look equal, just upside down.
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Thus, the larger the distance r, the larger the surface area of the shell 4πr2

and the smaller the energy received per unit area (flux F). If we have two
stars with observed fluxes F1 and F2 and magnitudes m1 and m2, we have
learned that if F1 = F2 then m1 = m2 (agree?). We have also learned that
if F1 = 100F2 then m2 − m1 = 5 (remember that in Hipparchus’ system
m = 1 stars were the brightest and m = 6 stars were the faintest).

The magnitude scale is logarithmic, thus we obtain the following general
relation between magnitude and flux

F1

F2

= 100(m2−m1)/5,

or

m1 − m2 = −2.5 log10

(
F1

F2

)
.

(Check that you can go from the previous equation to this one!) Given
the difference in flux between two stars, we can now find the difference in
magnitude.

We have so far discussed the apparent magnitude m of a star which depends
on the distance r. If you change the distance to the star, the flux and
hence the magnitude changes. We can also define absolute magnitude M
which only depends on the total luminosity L of the star. The absolute
magnitude M does not depend on the distance. It is defined as the star’s
apparent magnitude if we had moved the star to a distance of exactly
10 parsec (pc) (remember that 1pc=3.26ly). We can find the relation
between apparent and absolute magnitude of a star,

Fr

Fr=10pc

=
L/(4πr2)

L/(4π(10 pc)2)
=

(
10 pc

r

)2

= 100(M−m)/5,

giving

m − M = 5 log10

(
r

10 pc

)
.

(here we used a distance of r = 10 pc to calculate the flux for the absolute
magnitude, this comes directly from the definition of absoluter magnitude:
read it again if you did not understand this point). With this new more
precise definition, stars can have magnitudes lower than 1. The brightest
star in the sky, Sirius, has apparent magnitude -1.47 (note that the log-
arithmic dependence actually gives the brightest stars negative apparent
magnitude). The planet Venus at maximum brightness has apparent mag-
nitude -4.7 and the Sun has magnitude -26.7. The faintest object in the
sky visible with the Hubble Space Telescope has apparent magnitude of
about 30, about 1005 times fainter than the faintest star visible with the
naked eye. Originally the zero point of the magnitude scale was defined
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to be the star Vega. This has now been slightly changed with a more
technical definition (outside the scope of this course).

Note: In order to define the magnitude we use the flux which we receive on
Earth, the received flux. In some situations you will also need the emitted
flux, the flux measured on the surface of the star emitting the radiation.
It is important to keep these apart as they are calculated in a different
manner (what is the difference?).

6 Problems

Problem 1 (20–30 min.)

At very large (hν � kT ) and very small (hν � kT ) frequencies, Planck’s
law can be written in a simpler form. The first limit is called the Wien
limit and the second limit is called the Rayleigh-Jeans limit or simply the
Rayleigh-Jeans law.

1. Show that Planck’s law can be written as

B(ν) =
2hν3

c2
e−hν/(kT )

in the Wien limit.

2. Show that Planck’s law can be written as

B(ν) =
2kT

c2
ν2

in the Rayleigh-Jeans limit. What kind of astronomer do you think
uses Rayleigh-Jeans’ law regularly?

Problem 2 (60–90 min.)

Now we will deduce Wien’s displacement law by finding the peak in B(λ).

1. Use the expression in the text for B(λ) and take the derivative with
respect to λ. After taking the derivative, eliminate λ everywhere
using

x =
hc

kTλ
.

2. To find the peak in B(λ), we need to set the derivative equal to zero.
Show that this gives us the following equation

xex

ex − 1
= 5.

3. We now want to solve this equation numerically. We see that all we
need to do is to find a value for x such that the expression on the
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left hand side equals 5. The easiest way to do this is to try a lot of
different values for x in the expression on the left hand side. When
the expression on the left hand side has got a value very close to 5,
we have found x.

(a) The solution to x will be in the range x = [1, 10]. Define an
array x in Python with 1000 elements going from 1.0 as the
lowest value to 10.0 as the highest value. Make a plot of the
expression on the left hand side as a function of the array x.
Can you see by eye at which value for x the curve crosses 5?
Then you have already solved the equation.

(b) To make it slightly more exact, we try to find which x gives
us the closest possible value to 5. We define the difference ∆
between our expression and the value 5 which we want for this
expression

∆ =

(
xex

ex − 1
− 5

)2

,

where we have taken the square to get the absolute value. De-
fine an array in Python which contains the value of ∆ for all
the values of x. Plot ∆ as a function of x. By eye, for which
value of x do you find the minimum?

(c) Use Python to find the exact value of x (from the 1000 values
defined above) which gives the minimum ∆.

(d) Now use the definition of x to obtain the constant in Wien’s
displacement law. Do you get a value close to the value given
in the text?

Problem 3 (optional 1 hour–90 min.)

Here we will assume that the Sun is a perfect black body. You will need
some radii and distances. By searching i.e. Wikipedia for ’Sun’ or ’Saturn’
you will find these data.

1. The surface temperature of the Sun is about T = 5778 K. At which
wavelength λ does the Sun radiate most of its energy?

2. Plot B(λ) for the Sun. What kind of electromagnetic radiation
dominates?

3. What is the total energy emitted per time per surface area (flux)
from the solar surface?

4. Repeat the previous exercise, but now by numerical integration.
Do the integration with the box method (rectangular method) and
Simpson’s method. Compare the results. Compare your answer to
the analytical value found in the previous exercise.

5. Use this flux to find the luminosity L (total energy emitted per time)
of the Sun? (Here you need the solar radius).
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6. What is the flux (energy per time per surface area) that we receive
from the Sun? (Here you need the Sun-Earth distance). (See figure
13).

7. Spacecrafts are often dependent on solar energy. What is the flux
received from the Sun by the spacecraft Cassini-Huygens orbiting
Saturn? (Here you need the distance Sun-Saturn).

8. Assume that the efficiency of solar panels is 12%, i.e. that the electric
energy that solar panels can produce is 12% of the energy that they
receive. How many square meters of solar panel does the Cassini-
Huygens spacecraft need in order to keep a 40 W light bulb glowing?

Problem 4 (optional 30–60 min.)

We will now study a simple climate model. You will need the results from
question 1-6 in the previous problem.

1. We assume that the Earth’s atmosphere is transparent for all wave-
lengths. How much energy per second arrives at the surface of
Earth? The flux that you calculated in the previous exercises is
the flux received by an area located at the earth’s surface with ori-
entation perpendicular to the distance-vector between the Sun and
the Earth. Hint - Since the Earth is a sphere, the flux is not at all
constant over the surface. However, we do not need to calculate the
density for each square meter (fortunately). We can just look at the
size of the effective absorption area (shadow area) which is shown in
figure 14. Since the distance between the Sun and the Earth is so
large, we can assume that the rays arriving at earth are travveling
in the same direction (parallell). The radius r of the shaddow area
is then equal to Earth’s radius. The rest should be straight forward.

2. You are now going to estimate Earth’s temperatur by using a sim-
ple climate model that just takes into account the radiation from
the Sun and the Earth. We still assume that the atmosphere is
transparent for all wavelengths. The model says that the Earth is a
blackbody with a constant temperature. This means that it absorbs
all incoming radiation and emits the same amount (in energy/time)
in all directions. Calculate the Earth’s temperature by using the
simple climate model. You will need the result from the previous
question and Stefan Boltzmann’s law. Compare your result to the
empirical average value Tave ≈ 290 K? Why do you think there is a
difference?

Problem 5 (20–30 min.)

Here you will deduce a general expression for the flux per wavelength,
F (λ) = dE/(dAdt dλ), that we receive from a star with radius R at a
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Figure 13: Radiation from the Sun. The flux is constant on a spherical
surface with center at the Sun’s center of mass.

Figure 14: Shaddowarea (effective absorption area).
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distance r with surface temperature T . Assume that the star is a perfect
black body. You can solve this problem in two steps,

1. Find the luminosity per wavelength L(λ) = dE/(dλ dt), i.e. the en-
ergy per time per wavelength, emitted from the star. The intensity
B(λ) is defined as dE/(dA dΩ dλ dt cosθ). You need to integrate
over solid angle and area to obtain the expression for the luminos-
ity. Hint: Look at the derivation of Stefan-Boltzmann’s law in the
text.

2. Find the flux F (λ) using L(λ).

3. Does the expression for the flux peak at the same wavelength as
for Planck’s law? Can we simply use the maximum wavelength from
flux measurements to obtain λmax to be used in Wien’s displacement
law?

Problem 6 (4–4.5 hours)

I have produced a set of simulated spectra for a star. You will find the
spectra in 10 files at

http://folk.uio.no/frodekh/AST1100/lecture6

These files show spectra taken of the same star at 10 different moments.
The filename indicates the time of observation given in days from the first
observation taken at t = 0. The first column of the file is the wavelength of
observation in nm, the second column is the flux relative to the continuum
flux around the spectral absorption line Hα at λ0 = 656.3 nm. Due to
the Doppler effect, the exact position of the spectral line is different from
λ0. You will also see that this difference changes in time. As we have seen
before, real life observations are noisy. It is not so easy to see exactly at
which wavelength the center of the spectral line is located.

1. Plot each of the spectra as a function of wavelength. Can you see
the absorption line?

2. Make a bye-eye estimate of the position of the center of the spectral
line for each observation. Use the Doppler formula to convert this
into relative velocity of the star with respect to Earth for each of
the 10 observations (neglect the fact that the velocity of the Earth
changes with time).

3. Now we will make a more exact estimate of the spectral line position
using a least squares fit. As discussed in the text, we can model the
spectral line as a Gaussian function (see equation(3)),

Fmodel(λ) = Fmax + (Fmin − Fmax)e
−(λ−λcenter)2/(2σ2).

When λ = λcenter, the model gives Fmodel(λ) = Fmin. When λ is
far from λcenter the model becomes Fmodel(λ) = Fmax as expected
(check!). Thus the flux in this wavelength range if there hadn’t been
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any spectral line would equal Fmax. The flux at the wavelength for
which the absorption is maximal is Fmin. The spectra are normalized
to the continuum radiation meaning that Fmax = 1. We are left with
three unknown parameters, Fmin, σ and λcenter. The first parameter
gives the flux at the center of the spectral line, the second parameter
is a measure of the width of the line and the third parameter gives
the central wavelength of the spectral line. In order to estimate the
speed of the star with the Doppler effect, all we need is λcenter. But
in order to get the best estimate of this parameter, we need to find
the best fitting model to the spectral line, so we need to estimate
all parameters in order to find the one that interests us. Again we
will estimate the parameters using the method of least squares. We
wish to minimize

∆(Fmin, σ, λcenter) =
∑

λ

(F obs(λ) − Fmodel(λ, Fmin, σ, λcenter))
2,

where F obs(λ) is the observed flux from the file and the sum is per-
formed over all wavelengths available.

(a) For each spectrum, plot the spectrum as a function of wave-
length and identify the range of possible values for each of the
three parameters we are estimating. Define three arrays fmin,
sigma and lambdacenter in Python which contain the range of
values for each of Fmin, σ and λcenter where you think you will
find the true values. Do not include more values of the param-
eters than necessary, but make sure that the true value of the
parameter must be within the range of values that you select.
Do not use more than 50 values for each parameter, preferably
less. Hint: The FOR loop over λ might be easier if you use
indices instead of actual values for λ. That is, the FOR loop
runs over index i in the array, and then you find the lambda
value which corresponds to this index to use in the expression
for ∆.

(b) Define a 3-dimensional array delta where you calculate ∆ for
all the combinations of parameters which you found reasonable.

(c) Find for which combination of the parameters Fmin, σ and
λcenter that ∆ is minimal. These are your best estimates.

(d) Repeat this procedure for all 10 spectra and obtain 10 values
for the Doppler velocity vr.

4. Make an array of the 10 values you have obtained for the velocities
and plot it as a function of time.

5. Assume that the change of velocity with time indicates the presence
of a planet around the star (is there something in your observations
which indicates this?). The mass of the star was found to be 0.8
solar masses. Find the minimum mass of this planet (find vr and
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the period ’by eye’ looking at the velocity curve). Is this really a
planet? Hint: Remember that you need to subtract the peculiar
velocity (velocity of the center of mass of the system), found by
taking the mean of the velocity.

Problem 7 (10–15 min.)

In the text you find the apparent magnitudes of Sirius, Vega and the Sun.
Look up the distances to these objects (again, wikipedia is a useful source
of information) and calculate the absolute magnitude. Which of these
three stars is actually the brightest?

Problem 8 (15–20 min.)

1. Use the flux calculated in Problem 3.6 to check that the apparent
magnitude of the Sun used in the text is correct. In order to cali-
brate the magnitude you also need to know that the star Vega has
been defined to have zero apparent magnitude (actually with newer
definitions it has magnitude 0.03) and that the absolute magnitude
of Vega is 0.58. You also need to know the luminosity of Vega:
Look it up in Wikipedia. All other quantities that you may need
(for instance the distance to Vega) should be calculated using these
numbers.

2. The faintest objects observed by the Hubble Space Telescope (HST)
have magnitude 30. Assume that this is the limit for HST. How far
away can a star with the same luminosity as the Sun be for HST to
see it? (here you will need the luminosity of the Sun calculated in
problem 3.5)

3. Assume that the luminosity of a galaxy equals the luminosity of
2 × 1011 Suns. How far away can we see a galaxy using HST?
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AST1100 Lecture Notes

7–8 The special theory of relativity:

Basic principles

1 Simultaneity

We all know that ’velocity’ is a relative term. When you specify velocity
you need to specify velocity with respect to something. If you sit in your
car which is not moving (with respect to the ground) you say that your
velocity is zero with respect to the ground. But with respect to the Sun
you are moving at a speed of 30 km/s. From the point of view of an
observer passing you in his car with a velocity of 100 km/h with respect
to the ground, your speed is −100 km/h (see figure 1). Even though you
are not moving with respect to the ground, you are moving backwards at
a speed of 100 km/h with respect to the passing car.

In the following we will use the expression ’frame of reference’ to denote
a system of observers having a common velocity. All observers in the
same frame of reference have zero velocity with respect to each other.
An observer always has velocity zero with respect to his own frame of
reference. An observer on the ground measures the velocity of the passing
car to be 100 km/h with respect to his frame of reference. On the other
hand, the driver of the car measures the velocity of the ground to be
moving at −100 km/h with respect to his frame of reference. We will also
use the term ’rest frame’ to denote the frame of reference in which a given
object has zero velocity. In our example we might say: In the rest frame
of the passing car, the ground is moving backwards with 100 km/h.

You are observing a truck coming towards you with a speed of vground
truck =

−50 km/h with respect to the ground (see figure 2, velocities are defined
to be positive to the right in the figure). From your frame of reference,
which is the same frame of reference as the ground, the speed of the
truck is |vground

truck | = 50 km/h towards you. Now you start driving your
car in the direction of the truck with a speed of vground

car = +50 km/h
with respect to the ground (see again figure 2). From your frame of ref-
erence you observe the ground to be moving backwards with a velocity of
vcar

ground = −50 km/h. Again, from your frame of reference you now ob-
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Figure 1: Velocities are relative.

serve the velocity of the approaching truck to be vcar
truck = vground

truck −vground
car =

(−50 km/h)− (50 km/h) = −100 km/h (whereas from the frame of refer-
ence of an observer on the ground, the truck still has vground

truck = −50 km/h).
Now you make a turn so that you drive in the opposite direction: Now
your velocity is −50 km/h with respect to the ground, but now you are
driving in the same direction as the truck. You are now moving in the
same direction as the truck with exactly the same speed with respect to
the ground. From your frame of reference (which is now the same frame
of reference as the truck) the truck is not moving.

So far, so good. This was just stating some obvious facts from everyday
life in a difficult way. Now, replace the truck with a beam of light (a
photon) and the car with the Earth. The situation is depicted in figure 3.
You observe the speed of light from a distant star at two instants: One at
the 1st of January, another at the 1st of July. In January you are moving
away from the photons approaching you from the distant star. In July
you are moving towards the photons arriving from the star. If the speed
of light with respect to the distant star is c, then in January you expect
to measure the speed of the light beam from the star to be c − v where
v = 30 km/h is the speed of the Earth with respect to the same star (we
assume that the star does not move with respect to the Sun, so this is also
the orbital speed of the Earth). In July you expect to measure the speed
of light from the star to be c + v, just as for the truck in the example
above: The speed of the light beam seen from your frame of reference is
supposed to be different depending on whether you move towards it or
away from it.

In 1887 Michelson and Morley performed exactly this experiment which
is now famous as the ’Michelson-Morley experiment’. The result however,
was highly surprising: They measured exactly the same speed of light in
both cases. The speed of light seemed to be the same independently of
the frame of reference in which it is measured. This has some quite absurd
consequences: Imagine that you see the truck driving at the speed of light
(or very close to the speed of light, no material particle can ever travel at
the speed of light). You are accelerating your car, trying to pass the truck.
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Figure 2: The velocity of the truck seen from the car depends on the
velocity of the car.
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But no matter at which speed you drive, you see the truck moving with
the speed of light with respect to your frame. Even when you reach half
the speed of light, you still see the truck moving with velocity c. But how
is this possible? An observer at rest with respect to the ground measures
the truck moving with the speed of light as well, not with the velocity
c + c/2 = 3c/2 as you would expect given that it moves with velocity c
with respect to something moving with velocity c/2.

This was one of the first signs showing that something was wrong with
classical physics. The fact that the speed of light seemed to be constant
in all frames of reference led to several contradictions. We have already
seen one example of such a contradiction. We will now look at another
one which might shed some light on the underlying reason for these con-
tradictions. In figure 4 we show the situation. Observer O is standing on
the ground (at rest with respect to the ground), observer P is standing
in the middle of a train of length L moving with velocity v with respect
to the ground. Observer O sees two lightnings striking the front and the
rear of the train simultaneously. We call the two events A and B (An
event is a point in space and time, a point with a space and time coordi-
nate): Event A is the lightning striking the front, event B is the lightning
striking the rear. Events A and B are simultaneous. The light from these
two lightnings start traveling from the front and back end of the train
towards observer P. The beam approaching observer P from the front is
called beam 1 and the beam approaching from the rear is called beam 2.
Both observers synchronize their clocks to t = 0 at the instant when the
lightnings strike the train. Both observers have also defined their own co-
ordinate systems x (observer on the ground) and x′ (observer in the train)
which is such that the position of observer P is at x = x′ = 0 in both
coordinate systems at the instant t = 0 when the lightenings strike. Thus
the lightnings hit the train at the points x = x′ = L/2 and x = x′ = −L/2
as seen from both observers. We will now look how each of these observers
experience these events:

From the point of view of observer O standing on the ground:

The frame of reference of observer O on the ground is often referred to
as the laboratory frame . It is the frame of reference which we consider
to be at rest. At what time t = tC does observer P see beam 1 (we call
this event C)? To answer this question, we need to have an expression
for the x-coordinate of observer P and the x-coordinate of beam 1 at a
given time t. Observer P moves with constant velocity v so his position
at time t is xP = vt. Beam 1 moves in the negative x-direction with the
speed of light c starting from x1 = L/2 at t = 0. The expression thus
becomes x1 = L/2 − ct. Observer P sees beam 1 when x1 = xP at time
tC . Equating these two expressions, we find

tC =
L/2

c + v
. (1)

At what time t = tD does observer P see beam 2 (we call this event D)?
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Figure 3: The velocity of the starlight is measured when the Earth has
velocity 30 km/s towards and away from the light beam.

Figure 4: Event A: Lightning strikes the front part of the train. Event B:
Lightning strikes the rear part of the train. These two events are observed
by observer O on the ground and observer P in the train. The train has
length L.
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Following exactly the same line of thought as above, we find

tD =
L/2

c − v
. (2)

So according to observer O in the laboratory frame, tC < tD and observer
P should see the light beam from the lightning in front before the light
from the back. This sounds reasonable: Observer P is moving towards
beam 1 and away from beam 2 and should therefore see beam 1 first.

From the point of view of observer P standing in the train:

At what time t = tC does observer P see beam 1? We have just agreed on
the fact that the speed of light is independent of the frame of reference.
The result is that the speed of light is c also for the observer in the train.
Seen from the frame of reference of observer P, observer P himself is at
rest and the ground is moving backwards with speed v. Thus from this
frame of reference, observer P is always standing at the origin x′

P = 0 (the
coordinate system x′ moves with observer P). The expression for x′

1 is the
same as seen from observer O:x′

1 = L/2 − ct (convince yourself that this
is the case!). Again we need to set x′

1 = x′
P giving

tC =
L/2

c

At what time t = tD does observer P see beam 2? Again we follow the
same procedure and obtain

tD =
L/2

c

As calculated from the frame of reference of observer P, the two beams
hit observer P at exactly the same time.

So not only are the exact times tC and tD different as calculated from the
two frames of reference, but there is also an even stronger contradiction:
Observer P should be hit by the two beams simultaneously as calculated
from the frame of reference of observer P himself, but as calculated from
the laboratory frame, beam 1 hits observer P before beam 2. What does
really happen? Do the beams hit observer P simultaneously or not? Well,
let’s ask observer P himself:

So observer P, two lightnings struck your train simultaneously at the front
and rear end. Did you see these two lightnings simultaneously or did you see
one flash before the other?
Observer P: Sorry? I think you are not well informed. The two lightnings did
not happen simultaneously. There was one lightning which struck the front
part and then shortly afterwards there was another one striking the rear. So
clearly I saw the flash in the front first.
Observer O: No, no, listen, the lightnings did strike the train simultaneously,
there was no doubt about that. But you were moving in the direction of beam
1 and therefore it appeared to you that the front was hit by the lightning first.
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Observer P: So you didn’t watch very carefully I see. It is impossible that
the two lightnings struck at the same time. Look, I was standing exactly in
the middle of the train. The speed of light is always the same, no matter
from which direction it arrives. Beam 1 and beam 2 had to travel exactly the
same distance L/2 with exactly the same speed c. If the beams were emitted
simultaneously I MUST have seen the two flashes at the same time. But I
didn’t....beam 1 arrived before beam2, and so event A must have happened
before event B

So beam 1 did indeed hit observer P before beam 2. And indeed, observer
P has got a point: From observer P the two lightnings could not have
occurred at the same time. Asking observer O one more time he says that
he is absolutely certain that the two lightnings struck simultaneously. Who
is right?

We have arrived at one of the main conclusions that Einstein reached
when he was discovering the theory of relativity: simultaneity is relative.
If two events happen at the same time or not depends on who you ask.
It depends on your frame of reference. In the example above, the two
lightnings were simultaneous for the observer at rest on the ground, but
not for the observer moving with velocity v. This has nothing to do with
the movement of the light beams, it is simply time itself which is different
as seen from two different frames of reference. Simultaneity is a relative
term in exactly the same way as velocity is: When you say that two
events are simultaneous you need to specify that they are simultaneous
with respect to some frame of reference.

In order to arrive at the conclusion of the relativity of simultaneity, Ein-
stein excluded an alternative: Couldn’t it be that the laws of physics are
different in different frames of reference? If the laws of physics in the train
were different from those in the laboratory frame, then simultaneity could
still be absolute. The problem then is that we need to ask the question
’Physics is different in frames which move with respect to which frame
of reference?’. In order to ask this question, velocity would need to be
absolute. If velocity is relative, then we can just exchange the roles: The
observer in the train is at rest and the observer on the ground is moving.
Then we would need to change the laws of physics for the observer on
the ground. This would lead to contradictions. In order to arrive at the
theory of relativity, Einstein postulated the Principle of Relativity . The
principle of relativity states that all laws of physics, both the mathemati-
cal form of these laws as well as the physical constants, are the same in all
free float frames. In the lectures on general relativity we will come back to
a more precise definition of the free float frame. For the moment we will
take a free float frame to be a frame which is not accelerated, i.e. a frame
in which we do not experience fictive forces. You can deduce the laws
of physics in one free float frame and apply these in any other free float
frame. Imagine two space ships, one is moving with the velocity v = 1/2c
with respect to the other. If you close all windows in these spaceship there
is no way, by performing experiments inside these spaceships, that you can
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tell which is which. All free float frames are equivalent, there is no way to
tell which one is at rest and which one is moving. Each observer in a free
float frame can define himself to be at rest.

2 Invariance of the spacetime interval

We have seen that two events which are simultaneous in one frame of
reference are not simultaneous in another frame. We may conclude that
time itself is relative. In the same way as we needed two coordinate
systems x and x′ to specify the position in space relative to two different
frames, we need two time coordinates t and t′ to specify the time of an
event as seen from two different frames. We are used to think of time
as a quantity which has the same value for all observers but we now
realize that each frame of reference has its own measure of time. Clocks
are not running at the same pace in all frames of reference. Observers
which are moving with respect to each other will measure different time
intervals between the same events. Time is not absolute and for this reason
simultaneity is not absolute.

Look at figure 5. It shows two points A and B and two coordinate systems
(x, y) and (x′, y′) rotated with respect to each other. The two points A
and B are situated at a distance ∆xAB = L and at the same y-coordinate
∆yAB = 0 in the (x, y) system. In the rotated (x′, y′) system however,
there is a non-zero difference in the y-coordinate, ∆yAB 6= 0. Now, replace
y with t. Do you see the analogy with the example of the train above?

If we replace y with t and y′ with t′, then the two points A and B are the
events A and B in spacetime. Our diagram is now a spacetime diagram
showing the position of events in space x and time t, rather than a coordi-
nate system showing the position of a point in space (x, y). Consider the
two coordinate systems (x, t) and (x′, t′) as measurements in two different
frames of reference, the lab frame and the frame of observer P. We see that
in the (x, t) system, the two events are simultaneous ∆tAB = 0 whereas
in the (x′, t′) system, the events take place at two different points in time.

We are now entering deep into the heart of the special theory of relativity:
We need to consider time as the fourth dimension. And moreover, we
need to treat this fourth dimension similar (but not identical) to the three
spatial dimensions. That is, we need to talk about distances in space and
distances in time. But, you might object, we measure distances in space
in meters and time intervals in seconds. Can they really be similar? Yes
they can, and you will soon get rid of the bad habit of measuring space
and time in different units. From now on you will either measure both
space and time in meters, or both time and space in seconds. By the
time you have finished this course you will, without thinking about it, ask
the lecturer how many meters the exam lasts or complain to your friends
about how small your room in the dormitory is, giving them the size in
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Figure 5: The position of two points A and B measured in two different
coordinate systems rotated with respect to each other.
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square seconds.

How do you convert from meters to seconds and vice versa? The conversion
factor is given by the universal factor c, the speed of light. If you have a
time interval measured in seconds, multiply it by c and you have the time
interval in meters. If you have a distance in space measured in meters,
divide it by c and you obtain the distance measured in seconds:

x = ct, t = x/c.

From now on we will drop the factor c and suppose that distances in space
and time are measured in the same units. When you put numbers in your
equations you need to take care that you always add quantities with the
same units, if you need to add two quantities with different units, the
conversion factor is always a power of c.

Measuring time in meters might seem strange, but physically you can
think about it this way: Since the conversion factor is the speed of light, a
time interval measured in meters is simply the distance that light travels
in the given time interval. If the time interval between two events is 2
meters, it means that the time interval between these events equals the
time it takes for light to travel 2 meters. We might say that the time
interval between these events is 2 meters of light travel time. Similarly for
measuring distances in seconds: If the spatial distance between two events
is 10 seconds, it means that the distance equals the distance that light
travels in 10 seconds. The distance is 10 light seconds. Actually you are
already accustomed to measure distances in time units: You say that a star
is 4 light years away, meaning that the distance equals the distance that
light travels in four years. Note also one more effect of measuring space
and time in the same units: Velocities will be dimensionless. Velocity is
simply distance divided by time, if both are measured in meters, velocity
becomes dimensionless. We can write this as vdimensionless = dx/(cdt) = v/c
(to convert dt to units of length we need to multiply it by c, thus cdt). If
the velocity v = dx/dt = c is just the speed of light, we get vdimensionless = 1.
From now on we will just write v for vdimensionless. Note that some books use
β to denote dimensionless velocity, here we will use v since we will always
use dimensionless velocities when working with the theory of relativity.
The absolute value of velocity v is now a factor in the range v = [0, 1]
being the velocity relative to the velocity of light.

This was the first step in order to understand the foundations of special
relativity. Here comes the second: Let us, for a moment, return to the
spatial coordinate systems (x, y) and (x′, y′) in figure 5. Clearly the coor-
dinates of the points A and B are different in the two coordinate systems.
But there is one thing which is identical in all coordinate systems: The
distance between points A and B. If we call this distance ∆sAB we can
write this distance in the two coordinate systems as
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(∆sAB)2 = (∆xAB)2 + (∆yAB)2

(∆s′AB)2 = (∆x′
AB)2 + (∆y′

AB)2

(check that you understand why!). The distance between A and B has to
be equal in the two coordinate systems, so

(∆sAB)2 = (∆s′AB)2.

Is this also the case in spacetime? Can we measure intervals between
events in spacetime? This is now, at least in theory, possible since we
measure space and time separations in the same units. In a spatial (x, y, z)
system we know the geometrical relation,

(∆s)2 = (∆x)2 + (∆y)2 + (∆z)2,

from Euclidean geometry: The square of the distance between two points
(called the line element) is simply the sum of the squares of the coordinate
distances between these two points. But do the rules of Euclidean geom-
etry apply to spacetime? No, not entirely. The geometry of spacetime is
called Lorentz geometry. The distance between two events (line element)
in Lorentz spacetime ∆s2, is given by

The spacetime interval

(∆s)2 = (∆t)2 − (∆x2 + ∆y2 + ∆z2).

Note the minus sign. This minus sign is the only thing which distinguishes
space from time. The square of the spacetime distance between two events
equals the square of the time separation between these events minus the
square of the spatial separations between the events. And in the same way
as the distance between two points in space is the same in all coordinate
systems, the distance in spacetime, the spacetime interval is the same in
all frames of reference. We say that the spacetime interval is invariant.
A quantity is invariant if it has the same value in all frames of reference.
We already know another invariant quantity: the speed of light.

So, that was it. We’re done. Now you know what the special theory of
relativity is all about. Congratulations! You now see that we may write
the special theory of relativity in two sentences: Measuring space and
time intervals in the same units, you can calculate the spacetime inter-
val between two events using the formula for the line element in Lorentz
geometry. This spacetime interval between two events is invariant, it has
the same value as measured from all frames of reference. We will now see
what this means in practice. But before you continue, take a walk, go for
a coffee or simply take half an hour in fresh air. Your brain will need time
to get accustomed to this new concept.
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3 An example

A train is moving along the x-axis of the laboratory frame. The coordinate
system of the laboratory frame is (x, y) and of the train, (x′, y′). In the
train a light signal is emitted directly upwards along the y-axis (event
A). Three meters above, it is reflected in a mirror (event B) and finally
returns to the point where it was emitted (event C). In the train frame it
takes the light beam 3 meters of time to reach the mirror and 3 meters of
time to return to the point where it was emitted. The total up-down trip
(event A to event C) took 6 meters of time in the frame of the train (light
travels with a speed of v = 1, one meter per meter of light travel time).
From event A to event C, the train had moved 8 meters along the x-axis
in the laboratory frame. Because of the movement of the train, the light
beam moved in a pattern as shown in figure 6 seen from the lab frame.

1. Use the figure to find the total distance d traveled by the light beam
in the laboratory frame. Dividing the triangle into two smaller
triangles (see the figure), we find from one triangle that the dis-
tance traveled from the emission of the light beam to the mirror is
d/2 =

√
(4 m)2 + (3 m)2 = 5 m and similarly for the return path.

Thus, the total distance traveled by the light beam from event A to
event C is d = 10 m.

2. What was the total time it took for the light beam from event A to
event C in the laboratory frame? We have just seen that in the
laboratory frame, the light beam traveled 10 meters from event A
to event C. Since light travels at the speed of one meter per meter
of time, it took 10 meters of time from event A to event C. In the
frame of the train, it took only 6 meters of time.

3. What is the speed of the train? The train moved 8 meters in 10
meters of time, so the speed is v = 8/10 = 4/5, 4/5 the speed of
light.

4. What is the spacetime interval ∆s′ between event A and event C with
respect to the train frame? In the train frame, event A and event C

Figure 6: The light emitted (event A) upwards in the train is reflected
(event B) and received (event C) at the same place (in the train frame)
as it was emitted.
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happened at the same point, so ∆x′ = 0. It took 6 meters of time
from event A to event C, so ∆t′ = 6 m. The spacetime interval is
thus ∆s′ =

√
(6 m)2 − 0 = 6 m.

5. What is the spacetime interval ∆s between event A and event C with
respect to the laboratory frame? In the laboratory frame, the distance
between the events were ∆x = 8 m and the time interval was ∆t =
10 m. The spacetime interval is thus ∆s =

√
(10 m)2 − (8 m)2 =

6 m, exactly the same as ∆s′ in the train frame.

6. Was there an easier way to answer the previous question? Oh. . . uhm,
yes, you’re right, the spacetime interval is the same in all frames of
reference so I should immediately had answered ∆s = ∆s′ = 6 m
without any calculation. . . much easier!

Indeed much easier. . . remember that this will be very useful when calcu-
lating distances and intervals with respect to frames moving close to the
speed of light.

4 Observer O and P revisited

Armed with the knowledge of the invariance of the spacetime interval we
now return to observer O and P in order to sort out exactly what happened
for each of the observers. We know that with respect to the laboratory
frame, the two lightnings struck simultaneously (events A and B were
simultaneous) at points x = ±L/2 at the time t = 0 when observer P was
at the origin xP = 0. But at what time did the two lightnings strike with
respect to observer P in the train? We have learned that with respect to
the frame of reference following the train, the events A and B were not
simultaneous. But in the reference frame of observer P, at what time t′A
and t′B did the two lightnings strike? The two observers exchange a signal
at t = 0 such that their clocks are both synchronized to t = t′ = 0 at
the instant when observer P is at the origin in both coordinate systems
xP = x′

P = 0. Did event A and B happen before or after t′ = 0 on observer
P’s wristwatch? (It is common to talk about wristwatches when referring
to the time measured in the rest frame of a moving object, i.e. the time
measured by observers moving with the object. This wristwatch time is
also called proper time).

We know that an event is characterized by a position x and a time t in
each of the frames of reference. Let’s collect what we know about the
position and time of event A, B and the event when observer P passes
x = x′ = 0 which we call event P:

Event P:

x = 0 t = 0

x′ = 0 t′ = 0
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Figure 7: Info-figure: Near the beginning of his career, Albert Einstein
(18791955) thought that Newtonian mechanics was no longer enough to
reconcile the laws of classical mechanics with the laws of the electromag-
netic field. This led to the development of his special theory of relativity
(1905). It generalizes Galileo’s principle of relativity that all uniform mo-
tion is relative, and that there is no absolute and well-defined state of rest
from mechanics to all the laws of physics. Special relativity incorporates
the principle that the speed of light is the same for all inertial observers re-
gardless of the state of motion of the source. This theory has a wide range
of consequences that have been experimentally verified, including length
contraction, time dilation and relativity of simultaneity, contradicting the
classical notion that the duration of the time interval between two events
is equal for all observers. On the other hand, it introduces the spacetime
interval, which is invariant.
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Event A:

x = L/2 t = 0

x′ = L0/2 t′ = t′A

Event B:

x = −L/2 t = 0

x′ = −L0/2 t′ = t′B

Note that the length of the train is L0 for observer P and L for observer
O. We have already seen that observers in different frames of reference
only agree on the length of the spacetime interval, not on lengths in space
or intervals in time separately. For this reason, we do expect L and L0 to
be different. Look also at figure 5, the distance ∆xAB between the points
A and B differ between the two coordinate systems, in the system (x, y) it
is ∆xAB = L, but in the system (x′, y′) it is ∆x′

AB = x′
B − x′

A ≡ L′. The
length of the train in the rest frame of the train, L0, is called the proper
length. We will later come back to why it is given a particular name.

We want to find at which time t′A and t′B observed from the wristwatch
of observer P, did events A and B happen? Did they happen before or
after event P? For observer O all these events were simultaneous at t = 0,
the moment in which the two observers exchanged a signal to synchronize
their clocks. For observer P, could these events possibly had happened
before they happened for observer O? Or did they happen later than for
observer O?

In order to solve such problems, we need to take advantage of the fact
that we know that the spacetime interval between events is invariant.
Let’s start with the spacetime interval between events A and B.

Spacetime interval AB: From each of the frames of reference it can be
written as

∆s2
AB = ∆t2AB − ∆x2

AB,

∆(s′AB)2 = (∆t′AB)2 − (∆x′
AB)2.

(note that the y and z coordinates are always 0, so ∆y = ∆y′ = 0 and
∆z = ∆z′ = 0). In order to calculate the spacetime interval, we need the
space and time intervals ∆x2

AB, ∆t2AB, (∆x′
AB)2 and (∆t′AB)2 separately. In

both frames, the spatial distance between the two events equals the length
of the train in the given frame of reference. So ∆xAB = L and ∆x′

AB =
L0. For observer O the events were simultaneous ∆tAB = 0, whereas for
observer P the events happened with a time difference ∆t′AB = t′A − t′B.
Setting the two expressions for the spacetime interval equal we obtain,

L2 = L2
0 − (t′A − t′B)2. (3)
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(check that you obtain this as well!). We have arrived at one equation
connecting observables in one frame with observables in the other. We
need more equations to solve for t′A and t′B. Let’s study the spacetime
interval between events A and P.

Spacetime interval AP: From each of the frames of reference it can be
written as

∆s2
AP = ∆t2AP − ∆x2

AP

∆(s′AP )2 = (∆t′AP )2 − (∆x′
AP )2

In order to calculate the spacetime interval, we need the space and time
intervals ∆x2

AP , ∆t2AP , (∆x′
AP )2 and (∆t′AP )2 separately. In both frames,

the spatial distance between the two events equals half the length of the
train in the given frame of reference. So ∆xAP = L/2 and ∆x′

AP =
L0/2. For observer O the events were simultaneous ∆tAP = 0, whereas for
observer P the events happened with a time difference ∆t′AP = t′A−0 = t′A.
Setting the two expressions for the spacetime interval equal we obtain,

(L/2)2 = (L0/2)2 − (t′A)2. (4)

Note that we have three unknowns, t′A, t′B and L. We need one more equa-
tion and therefore one more spacetime interval. The spacetime interval
between B and P does not give any additional information, so we need to
find one more event in order to find one more spacetime interval. We will
use event C, the event that beam 1 hits observer P.

Spacetime interval CP: Again, we need

∆s2
CP = ∆t2CP − ∆x2

CP ,

∆(s′CP )2 = (∆t′CP )2 − (∆x′
CP )2.

In the first section we calculated the time tC when beam 1 hit observer P
in the frame of observer O. The results obtained in the laboratory frame
were correct since the events A and B really were simultaneous in this
frame. As we have seen, the results we got for observer P were wrong
since we assumed that events A and B were simultaneous in the frame of
observer P as well. Now we know that this was not the case. We have
∆tCP = tC − 0 = tC = L/2/(v + 1) (from equation 1, note that since we
measure time and space in the same units c = 1). As event C happens at
the position of observer P, we can find the position of event C by taking the
position of observer P at time tC giving ∆xCP = v∆tCP = vL/2/(v + 1).
In the frame of observer P, event C clearly happened at the same point as
event P so ∆x′

CP = 0. The time of event C was just the time t′A of event
A plus the time L/2 it took for the light to travel the distance L/2 giving
∆t′CP = t′A + L0/2. Equating the line elements we have

L2/4

(v + 1)2
(v2 − 1) = −(t′A + L0/2)2 (5)
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Now we have three equations for the three unknowns. We eliminate L
from equation (5) using equation (4). This gives a second order equation
in t′A with two solutions, t′A = −L0/2 or t′A = −vL0/2.

The first solution is unphysical: The time for event C is in this case
t′C = t′A + L0/2 = 0 so observer P sees the lightning at t′ = 0. Remember
that at t = t′ = 0 observer O and observer P are synchronizing their
clocks, so at this moment, and only this moment, their watch show the
same time. This means that observer P sees flash A at the same moment
as observer O sees the lightning. Thus at t = t′ = 0, observer O would see
the lightning hit the front of the train, but at the same time he would see
it hit observer P.

Disregarding the unphysical solution we are left with

t′A = −v
L0

2
.

Thus event A happened for observers in the train before it happened for
observers on the ground. Now we can insert this solution for t′A in equation
4 and obtain L,

L = L0

√
1 − v2 ≡ L0/γ, (6)

with γ ≡ 1/
√

1 − v2. So the length of the train is smaller in the frame of
observer O than in the rest frame of the train. We will discuss this result
in detail later, first let’s find t′B. Substituting for t′A and L in equation (3)
we find

t′B = v
L0

2
= −t′A.

So event B happened later for observers in the train than for observers on
the ground. To summarize: Event A and B happened simultaneously at
t = t′ = 0 for observers on the ground. For observers in the train event
A had already happened when they synchronize the clocks at t = 0, but
event B happens later for the observers in the train. Note also that the
time t′A and t′B are symmetric about t′ = 0. If you look back at figure 5
we see that the analogy with two coordinate systems rotated with respect
to each other is quite good: If we replace y by t we see that for the events
which were simultaneous ∆yAB = 0 in the (x, y) frame, event A happens
before y = 0 and event B happens after y = 0 in the rotated system (x′, y′).
But we need to be careful not taking the analogy too far: The geometry
of the two cases are different. The spatial (x, y) diagram has Euclidean
geometry whereas the spacetime diagram (x, t) has Lorentz geometry. We
have seen that this simply means that distances are measured differently
in the two cases (one has a plus sign the other has a minus sign in the line
element).

We have seen that for observer P event A happens before event P when
they synchronize their clocks. But does he also see the lightning before
event P? As discussed above, this would be unphysical, so this is a good
consistency check:

t′C = t′A +
L0

2
= −v

L0

2
+ L0/2 = L0/2(1 − v),
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which is always positive for v < 1. Thus observer P sees the flash after
event P. When does observer P see the second flash (event D) measured
on the wristwatch of observer P? Again we have t′D = t′B + L0/2 giving

t′D = L0/2(1 + v),

so the time interval between event C and D measured on the wristwatch
of a passenger on the train is

∆t′ = t′D − t′C = vL0

How long is this time interval as measured on the wristwatch of observer
O? We already have tC and tD from equations (1) and (2). Using these
we get the time interval measured from the ground,

∆t = vL0/
√

1 − v2

So we can relate a time interval in the rest frame of the train with a time
interval on the ground as

∆t =
∆t′√
1 − v2

= γ∆t′. (7)

Note that I have skipped index CD here since this result is much more
general: It applies to any two events taking place at the position of ob-
server P. This is easy to see. Look at figure 8. We define an observer
O which is at rest in the laboratory frame using coordinates (x, t) and
an observer P moving with velocity v with respect to observer O. In the
frame of reference of observer P we use coordinates (x′, t′).

We now look at two ticks on the wristwatch of observer P. Observer P
himself measures (on his wrist watch) the time between two ticks to be
∆t′ whereas observer O measures the time intervals between these two
ticks on P’s watch to be ∆t (measured on observer O’s wrist watch). In
the coordinate system of observer P, the wristwatch does not move, hence
the space interval between the two events (the two ticks) is ∆x′ = 0. For
observer O, observer P and hence his wristwatch is moving with velocity
v. So observer O measures a space interval of ∆x = v∆t between the two
events. The spacetime interval in these two cases becomes

(∆s)2 = ∆t2 − ∆x2 = ∆t2 − (v∆t)2 = (∆t)2(1 − v2)

(∆s′)2 = (∆t′)2.

Spacetime intervals between events are always equal from all frames of
reference so we can equate these two intervals and we obtain equation (7).

Going back to the example with the train: If the train moves at the speed
v = 4c/5 then we have ∆t = 5/3∆t′ ≈ 1.7∆t′. When observer O on the
ground watches the wristwatch of observer P, he notes that it takes 1.7
hours on his own wristwatch before one hours has passed on the wristwatch
of observer P. If observer P in the train is jumping up and down every
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Figure 8: Two reference frames: (x, y) coordinates are used for the system
defined to be at rest and (x′, y′) coordinates are used for the system defined
to be moving. In the upper figure, observer O is in the laboratory frame
with observer P in the frame moving with velocity v. In the lower figure,
the two systems have exchanged roles and v → −v. All equations derived
in the above system will be valid for the system below by exchanging
v → −v.
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second on his own wristwatch, it takes 1.7 seconds for each jump as seen
from the ground. For observers on the ground it looks like everything is
in slow-motion inside the train.

How does it look for the observers in the train? Remember that velocity
is relative. Being inside the train, we define ourselves as being at rest.
From this frame of reference it is the ground which is moving at the speed
−v. Everything has been exchanged: Since we now define the train to
be at rest, the coordinate system (x, t) is now for the train whereas the
coordinate system (x′, t′) is for the ground which is moving at velocity
−v (see figure 8). Note the minus sign: The motion of the ground with
respect to the train is in the opposite direction than the motion of the
train with respect to the ground. We can now follow exactly the same
calculations as above for two events happening at the position of observer
O instead of observer P. For instance we watch two ticks on the clock of
observer O. Then we find again formula (7) but with the meaning of ∆t
and ∆t′ interchanges. Assuming again a speed of v = −4c/5 (note again
the minus sign), observer P sees that it takes 1.7 hours on his wristwatch
for one hour to pass on the wristwatch of observer O. It is the opposite
result with respect to the above situation. While observers on the ground
observe everything in the train in ’slow-motion’, the observers on the train
observe everything on the ground in ’slow-motion’. This is a consequence
of the principle of relativity: There is no way to tell whether it is the train
which is moving or the ground which is moving. We can define who is it
rest and who is moving, the equations of motion that we obtain will then
refer to one observer at rest and one observer in motion. When we change
the definition, the roles of the observers in the equation will necessarily
also change. Thus, if we define the ground to be at rest and the train to be
moving and we deduce that observers on the ground will see the persons
in the train in ’slow-motion’, the opposite must also be true: If we define
the train to be at rest and the ground to be moving, then the observers
on the train will observe the observers on the ground in ’slow-motion’.
Confused? Welcome to special relativity!

Consider two observers, both with their own wristwatch, one at rest in
the laboratory frame (observer O) another moving with velocity v with
respect to the laboratory frame (observer P). Going back to equation (7)
we now know that if ∆t′ is the interval between two ticks on the wristwatch
of observer P, then ∆t is the time interval between the same two ticks of
observer P’s watch measured on observer O’s wristwatch. Using equation
7 we see that the shortest time interval between two ticks is always the
time measured directly in the rest frame of the wristwatch producing the
ticks. Any other observer moving with respect to observer P will measure
a longer time interval for the ticks on observer P’s wristwatch. This is
of course also valid for observer O: The shortest time interval between
two ticks on observer O’s wristwatch is the time that observer O himself
measures. The wristwatch time is called the proper time and is denoted
τ .
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Note that the proper time between two events (two ticks on a wristwatch)
also equals the spacetime interval between these events. This is easy to
see: consider again the ticks on observer P’s wristwatch. In the rest frame
of observer P, the wristwatch is not moving and hence the spatial distance
between the two events (ticks) is ∆x = 0. The time interval between
these two events is just the proper time ∆τ . Consequently we have for
the spacetime interval ∆s2 = (∆t′)2 − (∆x′)2 = ∆τ 2 − 0 = ∆τ 2.

Proper time
∆s2 = ∆τ 2

in the rest frame.

Now, let’s return to another result, the length of the train L as measured
by observer O on the ground. Again, the result in equation 6 can be shown
in a similar manner to be more general. The length L0 can be the length
of any object in the rest frame of this object. We see from equation 6 that
any observer which is not at rest with respect to the object will observe
the length L which is always smaller than the length L0. The length of an
object measured in the rest frame of the object is called the proper length
of the object. An observer in any other reference frame will measure a
smaller length of the object. The proper length L0 is the longest possible
length of the object. This also means that an observer in the moving
train will measure the shorter length L for another identical train being
at rest with respect to the ground (being measured to have length L0 by
observers on the ground).

5 The Lorentz transformations

Given the spacetime position (x, t) for an event in the laboratory frame,
what are the corresponding coordinates (x′, t′) in a frame moving with ve-
locity v along the x-axis with respect to the laboratory frame? So far we
have found expressions to convert time intervals and distances from one
frame to the other, but not coordinates. The transformation of spacetime
coordinates from one frame to the other is called the Lorentz transfor-
mation. In the exercises you will deduce the expressions for the Lorentz
transformations. Here we state the results. We start by the equations
converting coordinates (x′, y′, z′, t′) in the frame moving along the x-axis
to coordinates (x, y, z, t) in the laboratory frame,

The Lorentz transformations

t = vγx′ + γt′,

x = γx′ + vγt′,

y = y′,

z = z′.
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To find the inverse transformation, we have seen that we can exchange
the roles of the observer at rest and the observer in motion by exchanging
the coordinates and let v → −v (see figure 8),

The Lorentz transformations (cont.)

t′ = −vγx + γt,

x′ = γx − vγt,

y′ = y,

z′ = z.

Here

γ =
1√

1 − v2
.

6 List of expressions you should know by

now

Laboratory frame → page 4
Principle of relativity → page 7
Free float frame → page 7
Space time diagram → page 8
Line element → page 11
Lorentz geometry → page 11
Spacetime interval → page 11
Invariance → page 11
Proper time → page 13
Proper length → page 15

7 Problems

Problem 1 (10–15 min.)

We have seen the effect of Lorentz contraction, namely that a stick of
proper length L0 (measured in the rest frame of the stick) moving at a
speed v along the x-axis in the laboratory frame, is measured to have a
shorter length L = L0/γ in the laboratory frame. But what happens to
the size of the stick in y and z directions measured from the laboratory
frame? Do we correspondingly measure the stick to become thinner? We
will now investigate this:

To check this possibility, imagine two identical cylinders A and B which
are hollow such that if one cylinder becomes smaller (smaller radius) than
the other, it might pass inside the larger cylinder (see figure 9). The axis
of both cylinders are aligned with the x-axis at y = z = 0. Thus, the axis
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Figure 9: Does a moving cylinder become thinner as well as contracted
seen from the laboratory frame? In problem 1 we study this more closely.

of both cylinders are exactly along the x-axis. Cylinder A is at rest in the
laboratory frame, cylinder B is moving with velocity v along the x-axis,
approaching cylinder A.

1. We know that the length of cylinder B as measured from the labora-
tory frame shrinks. Assume that the same effect takes place in the
y and z directions such that the radius of cylinder B gets smaller
measured in the laboratory frame. What happens when the two
cylinders meet?

2. Now, look at exactly the same situation but from the point of view
of an observer sitting on cylinder B. What happens when the two
cylinders meet?

3. Can you give a good arguments to explain why y = y′ and z = z′

in the Lorentz transformations? (Note: this transformation is for
movements along the x-axis. If there are movements along the y
and z axes as well, the Lorentz transformation will look different and
much more complicated. This is outside the scope of this course.)

Problem 2 (10–20 min.)

A proton and an electron separated by a distance L0 are at rest in a train.

1. What is the electric field E ′ from the proton at the location of the
electron? (as measured in the rest frame of the train)

2. The train moves with velocity v with respect to the laboratory frame.
Show that the electric field E as measured in the laboratory frame
can be written as E = E ′/(1 − v2).

3. Based on this result, can you now use the principle of relativity
to find general qualitative arguments showing that the electric feld

23



must be a relative quantity depending on the frame of reference in
which it is measured?

Problem 3 (20 min.–1 hour)

When high energy cosmic ray protons collide with atoms in the upper
atmosphere, so-called muon particles are produced. These muon particles
have a mean life time of about 2 µs (2 × 10−6 s) after which they decay
into other types of particles. They are typically produced about 15 km
above the surface of the Earth. We will now study a cosmic ray muon
approaching the surface with the velocity of 0.999c.

1. How long time does it take for a muon to arrive at the surface of the
Earth as measured from the Earth frame?

2. Ignore relativistic effects: Do you expect many muons to survive to
the surface of the Earth before decaying? (compare with the mean
life time)

3. From relativity, we know that from the rest frame of the muon, the
time it takes to reach the surface of the Earth is different. We will
now use invariance of the spacetime interval to find the time it takes
in the frame of the muon to reach the surface of the Earth.

(a) Find the space and time distances ∆x and ∆t in the Earth
frame and use these to obtain the spacetime interval ∆s. Give
all the answers in seconds.

(b) What is ∆x′, the spatial distance traveled by the muon in the
muon rest frame?

(c) Use invariance of the line element to obtain the travel time ∆t′

in the muon rest frame. Will we detect muons at the surface
of the Earth?

4. The diameter of the galaxy is about 100 000 light years, thus even
with the speed of light it would take 100 000 years to pass the
galaxy. How long time does it take to transverse the galaxy in
the reference frame of a cosmic ray particle traveling at the speed
of v = 0.999999999999c? (Use again invariance of the spacetime
interval). Does this give some hope for future long distance space
travel?

Problem 4 (1–2 hours)

You have devised a clock which works the following way: It consists of
two mirrors a distance L0 apart. A light ray is emitted along the positive
x-axis at one of the ends and then reflected back and forth between the
two mirrors. Each time it hits one of the mirrors it gives a ’tick’. See
figure 10.
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Figure 10: The situation in problem 4: A light beam is emitted when
x = x′ = 0 and t = t′ = 0 (event A). Then the beam is reflected in the
right mirror (event B) and reflected again in the left mirror (event D).
This picture is taken from the laboratory frame at event B t = tB (the
position of event A and D are just marked, they are not happening at this
moment). Event C happens at the same time as event B in the laboratory
frame. The position of event C in the laboratory frame is the position
x = xC of the origin of the train frame.

1. How long does it take between each tick in the reference frame of
the clock?

2. Now we observe the clock from a passing train. The clock is at
rest in the laboratory frame with coordinates (x, t) and we observe
it from the train moving with velocity v along the positive x-axis
of the laboratory frame. We use coordinates (x′, t′) for the train
frame (see figure 10). Event A is the emission of light at the left
mirror. This is the reference event occurring at x = x′ = 0 and
t = t′ = 0. Event B is when the light ray hits the opposite mirror.
We also introduce event C which takes place at the position of the
middle point of the train (where x′ = 0) at the same time as event
B seen from the laboratory frame. We want to find out how long
time ∆t′AB it took for the light beam to reach the right mirror in
the train frame. Write a list of events A, B and C and write the
position (x, t) and (x′, t′) in the two frames for all three events. The
only unknowns here are x′

B, t′B and t′C . All the other coordinates
should be expressed in terms of the known quantities, L0 and v.

3. Write the spacetime intervals ∆sAB and ∆s′AB between events A
and B in the two frames. Show that invariance of the interval gives
x′

B = t′B. Could you have guessed this using physical arguments
without any calculations?

4. Write the spacetime intervals ∆sAC and ∆s′AC between events A
and C in the two frames. Show that invariance of the interval gives
t′C = L0/γ.

5. Write the spacetime intervals ∆sBC and ∆s′BC between events B
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and C in the two frames. Show that invariance of the interval gives
t′B = L0γ(1 − v).

6. Now define event D which is when the light ray returns to the first
mirror at x = 0. Use invariance of the spacetime interval for appro-
priate events to find at what time t′D event D happened in the train
frame.

7. In the frame of the train, how long time did it take from the light
was emitted to the first ’tick’? And how long time did it take from
the first tick to the second tick? Compare this to the results in the
lab frame. Is this a useful clock in the frame of reference of the
train?

Problem 5 (30 min.–1 hour)

Quasars are one of the most powerful sources of energy in the universe.
They are smaller than galaxies, but emit about 100 times as much energy
as a normal galaxy. The engine in a quasar is believed to be a black hole.
Jets of plasma are ejected into space from areas close to the black hole.

1. In a Quasar called 3C273 at a distance of 2.6× 109 light years from
Earth, such a jet was observed during a period of three years. During
this period it was found to have moved an angular distance of 2×10−3

arc seconds transversally on the sky. Show that the physical speed
of the jet was v = 8.4c, more than eight times the speed of light.

2. We will now look at the physics of this process in order to understand
what is going on. In figure 11 you can see the jet and two events
A and B which are the events that photons were emitted as the
jet moved through space. The photons emitted in event B were
observed three years later than the photons emitted in point A. Here
v is the real physical speed of the jet and θ is the angle between the
direction of the jet and the line of sight. Show that the time interval
∆tobserved between the reception of photons (observations) from these
two events is

∆tobserved = ∆t(1 − v cos θ),

where ∆t is the real time interval (in the Earth frame) between
these two events. Hint: No theory of relativity is needed in this
calculation, all quantities you need are taken in the same frame of
reference.

3. Show that the apparent transversal speed of the jet can be written
as

vobserved =
v sin θ

1 − v cos θ
.

4. Assume that θ = 45◦. For which range of real speeds v do we observe
an apparent speed vobserved which is larger than the speed of light?

5. The theory of relativity says that no signal can travel faster than
the speed of light. Is this principle violated?
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Figure 11: The quasar ejecting matter at an angle θ with the line of sight.
The speed of the ejected matter is v. We define two events A and B which
are the emission of photons from the ejected matter at the points A and B.
At event A, the ejected matter passes point A and emits photons towards
Earth. Three years later, the ejected matter passes point B and again
emits photons.
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The effect we have seen here, an apparent speed of an object which exceeds
the speed of light, is called superluminal motion.

Problem 6 (30 min.–2 hours)

In this exercise we will deduce the Lorentz transformations. We start by
noting that the transformation equations must be linear in x and t. This
is because the inverse transformation needs to have the same form as the
original transformation by the principle of relativity: We can exchange the
definition of who is at rest and who is moving only if the transformation is
linear such that if x ∝ x′ then x′ ∝ x. For instance if we had a coordinate
transformation x ∝ (x′)2, the inverse transformation would read x′ ∝

√
x.

These two equations would be completely different and the principle of
relativity would be violated: The two observers would have completely
different equations for transforming from one system to the other. Thus
we can write the Lorentz transformations on the form

t = f(v)x′ + g(v)t′, (8)

x = h(v)x′ + k(v)t′, (9)

y = y′,

z = z′,

where f(v), g(v), h(v) and k(v) are unknown functions of v. Note that
the motion is along the x-axis, so no transformation is needed for the
other two spatial dimensions. And again, by the principle of relativity,
the inverse transformation must be obtained by exchanging the roles of
the observers (x, y) ↔ (x′, y′) and the velocity v → −v (see again figure
8),

t′ = f(−v)x + g(−v)t, (10)

x′ = h(−v)x + k(−v)t, (11)

y′ = y,

z′ = z.

We need to solve for our unknown functions of v, namely f(v), g(v), h(v)
and k(v).

1. Consider two events A and B. Event A happens at x = x′ = 0 at
t = t′ = 0. Event B happens at (x, t) in the laboratory frame and
at the origin x′ = 0 at time t′ in the moving frame (which moves
with velocity v with respect to the laboratory frame). Write the
time intervals ∆tAB and ∆t′AB in terms of the coordinates x, t, x′, t′.
Then use equation (7) to find a relation between t and t′. You see
that this relation already resembles one of equations (8)–(11) with
one term missing. Look at at your coordinates and compare with
the equations (8)–(11) and you will realize that the missing term
vanishes. Show that

g(v) = γ.
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2. We will still study the same two events. At what position x in the
laboratory frame does event B happen? Express the answer in terms
of t and v. Then use the previous result to elimintate t and write
this in terms of t′ and v. This gives you a relation between x and
t′. You would need either an x′ or t to obtain one of the relations
above (equations 8–11), but show that one of these vanishes. Then
show that

k(v) = vγ.

3. We will now study two different events A and B. Event A is again
x = x′ = 0 and t = t′ = 0. But event B now happens at the position
x′ = L0 in the moving frame and x = L in the laboratory frame. In
the laboratory frame, the two events happen at the same time. Use
equation 6 to obtain a relation between x and x′. Look again at the
Lorentz transformation equations (equations 8–11): Your expression
needs either a t or a t′ but one of these vanishes. You can thus
conclude that

h(−v) = γ = h(v)

4. Now we are only missing f(v) in order to have deduced the full
Lorentz transformations. Consider two other events A and B: Event
A is again for x = x′ = 0 at t = t′ = 0 and event B is at position
(x, t) in the laboratory frame and (x′, t′) in the moving frame. Use
equations (8)–(9) to show that the spacetime interval between A and
B for the two frames can be written

∆s2 = (f(v)x′ + γt′)2 − (γx′ + vγt′)2

(∆s′)2 = (t′)2 − (x′)2

Show that invariance of the spacetime interval gives

f(v) = γv.

The Lorentz transformations have been deduced.

Problem 7 (20 min.–1 hour)

We will now return to the clock in problem 4 and solve this using the
Lorentz transformations instead of the spacetime interval. We want to
find at what time t′B does the light hit the right mirror and at what time
t′D it has returned to the left mirror. Using the Lorentz transformations
we will only need events A, B and D.

1. Again, write up the coordinates (x, t) and (x′, t′) for these three
events. The following are unknown: x′

B, t′B, x′
D and t′D.

2. Use the Lorentz transformations to find t′B and t′D. You do not need
to find x′

B and x′
D.
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3. Use the Lorentz transformations to find the time (in the train frame)
of the next two ticks of the clock. Are the intervals consistent with
the first two ticks?
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AST1100 Lecture Notes

9–10 The special theory of relativity:

Four vectors and relativistic dynamics

1 Worldlines

In the spacetime diagram in figure 1 we see the path of a particle (or
any object) through spacetime. We see the different positions (x, t) in
space and time that the particle has passed through. Such a path showing
the points in spacetime that an object passed is called a worldline. We
will now study two events A and B (on the worldline of a particle) which
are separated by a small spacetime interval ∆s. These events could be
the particle emitting two flashes of light or the particle passing through
two specific points in space. The corresponding space and time intervals
between these two events in the laboratory frame are called ∆t and ∆x.
From the figure you see that ∆t > ∆x. You can see that this also holds
for every small spacetime interval along the path. This has to be this way:
The speed of the particle at a given instant is v = ∆x/∆t. If ∆x = ∆t
then v = 1 and the particle travels at the speed of light. That ∆t > ∆x
simply means that the particle travels at a speed v < c which it must.
The worldline of a photon would thus be a line at 45◦ with the coordinate
axes. The worldline of any material particle will therefore always make
less than 45◦ with the time axis.

Events which are separated by spacetime distances such that ∆t > ∆x are
called timelike events. Timelike events may be causally connected since a
particle with velocity v < c would have the possibility to travel from one
of the events to the other event. There is a possibility that the second
event could have been caused by the first event since it is possible for a
signal to travel between the events. Timelike events have positive line
elements,

∆s2 = ∆t2 − ∆x2 > 0.

Events for which ∆t = ∆x are called lightlike events. Only a particle
traveling at the speed of light (v = ∆x/∆t = 1) could travel from the first
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Figure 1: The worldline, the trajectory of a particle in a spacetime di-
agram. Two events A and B along the path of the particle have been
marked.

event to the second. Lightlike events have zero spacetime interval,

∆s2 = ∆t2 − ∆x2 = 0.

Note one consequence of this: Remember that the proper time interval
∆τ 2 equals the spacetime interval ∆s2. Thus, photons always have ∆τ =
0, the wristwatch attached to a photon would not change. Photons and
other particles traveling at the speed of light do not feel the effect of time.

Events for which ∆x > ∆t are called spacelike events. For these events,
the spatial component of the distance is larger than the time component.
No worldline could ever connect two spacelike events as it would require a
particle to travel faster than light. Thus, spacelike events are not causally
connected. The first event could not have caused the second. The space-
time interval for spacelike events is negative,

∆s2 = ∆t2 − ∆x2 < 0.

In figure 2 we see two events A and B and three different worldlines be-
tween these events. These events could be a car passing position xA and
position xB in the laboratory frame. In the spacetime diagram we see
three worldlines each corresponding to a car. The straight worldline must
correspond to a car driving with constant speed v = ∆x/∆t = constant.
The two other worldlines must correspond to cars accelerating (changing
their speed and thereby changing the slope of the worldline) along the way
from xA to xB, but all cars reach point xB at the same time (event B).
All cars also passed point xA at the same time (event A). Same time here
means ’same time’ for all frames of reference: all the cars meet at event A
and B, so if they meet simultaneously in one frame of reference they must
meet simultaneously in all other frames of reference (did you get this? If
not, read the sentences again!).
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Figure 2: Different worldlines connecting the two events A and B.

We will now ask a question which answer may seem obvious in this case,
but which might not be so obvious in other situations. The question
is: Given a particle (or a car) going from event A to event B. If this
particle is in free float (in special relativity this means that no forces act
on the particle), which worldline will the particle take between event A
and event B? Looking back at figure 2 we see three possible worldlines,
but in fact there is an infinite number of possible worldlines connecting
the two events. The obvious answer in this case is that it will follow
a straight line in spacetime, i.e. the straight worldline corresponding to
constant velocity. This is just a modern way of saying Newton’s first law:
A body which is not under the influence of external forces will continue
moving with constant velocity. But is there a deeper principle behind? In
the theory of relativity there is, and this principle is called the principle
of maximal aging. This is a fundamental principle in the special as well
as in the general theory of relativity.

The principle of maximal aging says that a particle in free float (no forces
act on the particle) will follow the worldline which corresponds to the
longest possible proper time interval between the two events. We remem-
ber that proper time is the wristwatch time, the time measured on the
clock attached to the particle. So let different particles take different
paths in spacetime between the two events. Attach a wristwatch to each
of the particles. At event B, you look at the time interval between event
A and B measured on the wristwatch of each of the particles. The particle
which measures the longest proper time, i.e. the particle with the wrist-
watch which made most ticks during the trip from event A to event B, is
the particle taking the path that a particle in free-float would take.

How do we calculate the proper time interval that a given particle takes
from event A to event B? The clue is to remember that the proper time
interval ∆τ between two events equals the spacetime interval, or the total
length of the path in spacetime ∆s taken between the two events. For the
worldline of a particle with constant velocity, we know that the distance
in spacetime traveled from event A to event B is just ∆s =

√
∆t2 − ∆x2

where ∆x and ∆t are space and time intervals measured in an arbitrary
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frame of reference. To measure the total spacetime interval along the
worldline of a particle which does not move with constant velocity, we
need to break the path up into small path lengths ds. This path length
is so small that we can assume the velocity to be constant during the
time it takes to travel this interval in spacetime. We can thus write ds =√

dt2 − dx2 where dx and dt are the corresponding small space and time
displacement measured in the arbitrary frame of reference. To obtain the
total length of the path in spacetime traveled between two events A and
B, we need to integrate all these tiny spacetime intervals ds giving

∆s =

∫ B

A

√
dt2 − dx2. (1)

This equals measuring the length s of a curved path between two points
A and B in the x-y plane:

∆s =

∫ B

A

√
dx2 + dy2.

Note again a huge difference here: The minus sign in the spacetime inter-
val. We know from Euclidean geometry that the shortest path s between
two points A and B in the plane, is the straight line. The minus sign
in the line element for Lorentz geometry gives rise to the opposite result
(which we will not derive here): The longest path s between two events
A and B in spacetime is the straight worldline. Therefore, if we measure
the length of the spacetime path for all the three worldlines in figure 2
using the integral in (1), we find that the longest path in spacetime is the
straight worldline, i.e. the worldline of the car driving with constant veloc-
ity. Remember again that the length of the spacetime interval ∆s equals
the total proper time ∆τ measured on the wristwatch of the particle. So
the longest proper time interval between two events is measured on the
particle taking the straight line in spacetime, i.e. the particle which has
constant velocity. We have just deduced Newton’s first law from the prin-
ciple of maximal aging. When we come to the general theory of relativity,
we will see that the spacetime geometry and hence the form of the line
elements ∆s is different in a gravitational field. We will need the principle
of maximal aging to tell us how a free float particle is moving in this case.

2 Four-vectors

We are used to vectors in three-dimensional space giving the position of a
point in space,

~x = (x1, x2, x3),

where I have used (x1, x2, x3) instead of (x, y, z) for the components in
the three spatial dimensions. A 4-vector is similarly defined to give the
position of an event in four dimensional spacetime,

x = (x0, x1, x2, x3),
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Figure 3: Info-figure: An example of a light cone, the three-dimensional
surface of all possible light rays arriving at and departing from a point in
spacetime. Here it is depicted with one spatial dimension suppressed. In
general, there are three types of curves in spacetime: 1) Time-like curves,
with a speed less than the speed of light. These curves must fall within
a cone defined by light-like curves. 2) Light-like curves, having at each
point the speed of light. They form a cone in spacetime, dividing it into
two parts. 3) Space-like curves, falling outside the light cone. (Figure:
Wikipedia)
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or if you wish (t, x, y, z). For components of a normal three dimensional
vector, we use Latin letters, typically i and j, for the indices: The com-
ponents of ~x are xi where i goes from 1 to 3. For the components of a
4-vector, we use Greek indices, typically µ and ν. The components of a
four-vector x are xµ where µ run from 0 to 3, 0 being the time component.
If we wish to separate the time and space part of a four-vector we might
also write it as x = (t, xi) where xi refers to all three spatial components.

The four-vector xµ points to an event in spacetime for a given frame of
reference. We have already learned that in order to transform spacetime
coordinates from one frame of reference to another, we need the Lorentz
transformations. Thus, we may write the transformation of a four-vector
xµ in one frame of reference to x′

µ in another frame of reference by a matrix
multiplication, 

t′

x′

y′

z′

 =


γ −vγ 0 0

−vγ γ 0 0
0 0 1 0
0 0 0 1




t
x
y
z


Compare with the expression for the Lorentz transformation in the pre-
vious lecture notes. Check that the matrix multiplication gives you the
correct equations. (Compare this equation with matrices which are used
to rotate between coordinate systems in two spatial dimensions, do you
see a similarity? Remember the analogy used in the previous lecture notes
between a coordinate change in the (x, y) plane and the (x, t) diagram).

We can write this matrix equation as

x′
µ =

3∑
ν=0

cµνxν ,

where cµν is the matrix above. This is the equation which transforms any
four-vector from one frame of reference to another. We will now write this
equation using the so-called Einstein conventions. This is just a rule which
will save you from a lot of writing. Instead of writing the sum symbol,
we simply say that when two factors in a term contain the same index,
there is an implicit sum over this index. If the index is Latin, then there
is a sum over the three spatial dimensions, if the index is Greek, there is
a sum over the three spatial dimensions plus time. Using this convention
we can write the previous equation simply as

x′
µ = cµνxν (2)

It can be shown that four-vectors follow the normal rules for summations
and subtractions (see exercises). We will now look at the scalar product.
For three dimensional vectors, the scalar product can be written as,

~x · ~y =
3∑

i=1

xiyi = xiyi,
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where the Einstein convention was used in the last expression. We can also
define a scalar product for four-vectors. Instead of writing a dot between
the vectors, one usually writes the scalar product with one upper index
and one lower index,

xµyµ = x0y0 − xiyi.

One index µ is written high and the other low to show that this is the
scalar product and not a normal sum. Note that the scalar product is
defined with a minus sign in front of the spatial part. If we had written
both indices low, this would mean,

xµyµ = x0y0 + xiyi,

using the Einstein summation convention. This is different from the scalar
product. It should be clear where the minus sign comes from, consider
a spacetime interval ∆xµ (a spacetime interval is an interval between
two points x1

µ and x2
µ in time and space such that ∆xµ = x1

µ − x2
µ =

(∆t, ∆x, ∆y, ∆z)). The scalar product of a spacetime interval with itself
gives,

∆xµ∆xµ = ∆t2 − ∆x2 = ∆s2

(assuming ∆y = ∆z = 0). The result is the scalar ∆s2. A scalar is
a quantity which is invariant, which has the same value in all frames of
reference. We already knew that the spacetime interval ∆s2 is a scalar
(where did we learn this?). For infinitesimal distances between events, we
may write this as,

ds2 = dxµdxµ.

We learned above that a four vector is a vector which transforms according
to the Lorentz transformation (equation 2) when changing from one frame
of reference to another frame of reference having velocity v with respect to
the first. This has an important consequence: You cannot choose 4 num-
bers on random, put them together and call it a 4-vector! The numbers
entering in a four-vector need to be physical quantities which are such
that the 4-vector transforms accoring to equation 2. We thus need to take
care when performing mathematical operations with 4-vectors: The result
may not necessarily be a 4-vector.

As an example we will now investigate what happens with a 4-vector
when multiplying it with some number. Say that you for some reason
need to multiply a spacetime distance ∆xµ = (∆t, ∆x, ∆y, ∆z) with the
corresponding time interval ∆t forming

∆yµ = ∆t∆xµ.

Is ∆yµ a 4-vector? We can easily check this by checking whether it trans-
forms according to equation 2 when changing frame of reference. We know
that ∆xµ follows this transformation. We also now that ∆t′ = (1/γ)∆t
when changing frame of reference. We thus have for ∆y′

µ in a new frame
of reference

∆y′
µ = ∆t′∆x′

µ = (1/γ)∆tcµν∆xν = (1/γ)cµν∆yν .
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Because of the factor 1/γ we see that ∆yµ does not transform according to
equation 2 and ∆yµ is therefore NOT a 4-vector. We thus cannot multiply
a 4-vector with a time interval and obtain a 4-vector.

A four-vector which is multiplied by a scalar however, is itself a four-
vector. If instead of multiplying ∆xµ with ∆t, we multiply it with the
corresponding spacetime interval ∆s we get

∆yµ = ∆s∆xµ.

Transforming to a different frame of reference we have again ∆x′
µ =

cµν∆xν since ∆xµ is a four-vector and ∆s′ = ∆s since ∆s is a scalar.
We thus have

∆y′
µ = ∆s′∆x′

µ = ∆scµν∆xν = cµν∆yµ

which does follow equation 2. In this case ∆yµ is a four-vector. We thus
have generally that when Aµ is a four vector and f is a scalar, the product

Bµ = fAµ,

is a 4-vector. In the exercises you will show that the results of summing
or subtracting 4-vectors are 4-vectors.

3 Four-velocity

Can we define a four dimensional velocity Vµ, that is, a four dimensional
vector showing the direction of motion in spacetime of a particle with
coordinates xµ? By analogy to normal three dimensional velocity, the
four-velocity Vµ should be the the rate of change of xµ. A natural choice
would be dxµ/dt, but this is not a four-vector: As we discussed above, ∆t
or dt is not a scalar, it has different values in different frames of reference.
Thus dxµ/dt does not transform as a 4-vector, i.e. you cannot use the
Lorentz transformation to transform it from one frame of reference to
another. But in order to have velocity, we need the rate of change with
respect to some time interval ∆t. Which measure of time can we use?

Remember that proper time τ is a scalar, it is defined as the time observed
on the wristwatch of an observer. All observers will measure the same time
interval ∆τ between two events (how do they measure ∆τ?). Consider
the example with the train and observer P who is jumping up and down.
Measured on the wrist watch of observer P, one jump takes one second,
thus one second of proper time for the frame of reference of the train.
According to observer O’s wristwatch, the jump takes 1.7 seconds, but
this is not the proper time for the train (remember the definition of proper
time!). But observer O can take his binoculars and read of the time
between each jump on observer P’s wristwatch. He will then find, in
agreement with observer P, that in proper time units for the train, each
jump takes one second.
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Note that proper time needs to be defined with respect to some frame of
reference (in this case the train), but once this is defined, everybody agrees
on the proper time interval between two events taking place at the same
spot in that frame. In the case of four-velocity, there is no doubt about
which proper time we are speaking about: Four-velocity is the velocity
of a particle or an object (for instance a train) and the proper time ∆τ
which we use to define four velocity is the time measured in the rest frame
of this object. So four-velocity can be defined as

Vµ =
dxµ

dτ
.

Let us find the length (absolute value) of the four-velocity (the square root
of the scalar product of the vector with itself). The square of the length
is (as for normal vectors) given by

VµV
µ =

dxµ

dτ

dxµ

dτ
=

dxµdxµ

dτ 2
=

ds2

dτ 2
=

dτ 2

dτ 2
= 1.

(did you understand every step here?) Taking the square root of this we
still get 1. The length of the four-velocity is thus always one. Remember
that a velocity of one means the velocity of light. All particles move with
the velocity of light in spacetime! For each proper time interval ∆τ a
particle moves an equal interval ∆s in spacetime.

We can write the four-velocity in terms of normal 3-velocity as

Vµ = (
dt

dτ
,
dxi

dτ
) = (

dt

dτ
,
dt

dτ

dxi

dt
) =

dt

dτ
(1, ~v) = γ(1, ~v)

where we have used that ∆t/∆τ = dt/dτ = γ from the previous lecture
notes (go back and check how you derived this, it is important!). Now we
are ready to answer a question that has bothered us all the time since we
learned about the Lorentz transformations: We know how to transform
between coordinates (x, t) and (x′, t′) in two different frames of reference.
But how do you transform a velocity vx from one frame to the other? Say
that you stand on the ground and look at a passing airplane. You measure
the velocity of the airplane along the x-axis to be vx. A car is passing you
on the street with velocity vrel along the same x-axis and you note that the
driver is also watching the airplane. You start to wonder which velocity
v′

x that the driver is measuring for the airplane. The situation is depicted
in figure 4. In normal non-relativistic physics you know that the answer
should read v′

x = vx − vrel, but we have learned that this does not work
for velocities close to the velocities of light (for instance, look back at the
Michelson-Morley experiment). Assuming that there are no motions in the
y and z direction, we can now write the four velocity of the airplane from
our laboratory frame as Vµ = γ(1, vx) and from the car as V ′

µ = γ′(1, v′
x)

where γ = 1/
√

1 − v2
x and γ′ = 1/

√
1 − (v′

x)
2. We know that four-velocity

is a four-vector and that four-vectors by definition transform from one
frame of reference to the other under the Lorentz transformation,
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Figure 4: The observer on the ground measuring a velocity vx for the
airplane, wondering which velocity v′

x the driver of the car measures for
the same airplane.

V ′
µ = cµνVν ,

or written in terms of matrices as
γ′

γ′v′
x

γ′v′
y

γ′v′
z

 =


γrel −vrelγrel 0 0

−vrelγrel γrel 0 0
0 0 1 0
0 0 0 1




γ
γvx

γvy

γvz


where γrel = 1/

√
1 − v2

rel.

From this matrix equation, we obtain two equations for the velocity vx

and v′
x,

γ′ = (γrel − vrelγrelvx)γ

γ′v′
x = (−vrelγrel + γrelvx)γ.

Dividing the second equation by the first, we obtain

v′
x =

vx − vrel

1 − vrelvx

, (3)

which is the Lorentz transformation for velocities. Note that when the
speed of the airplane approaches the speed of light, vx → 1 then v′

x → 1
showing that the laboratory observer and the observer in the car will both
measure the speed of light for the airplane. This solves the weird result
obtained by Michelson and Moreley: The speed of light is the same from
all frames of reference.

4 Relativistic momentum and energy

What about momentum and energy? We have learned that the velocity v
of an object as measured from two different frames of reference transform
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according to the Lorentz transformation (equation 3). This must neces-
sarily have consequences for how we measure momentum p = mv and
energy E = 1/2mv2 from two different frames of reference. There must be
some corresponding Lorentz transformations for momentum and energy.
We have learned a simple and easy recipe for finding the transformation
equations between different frames: Construct a four-vector and use the
transformation properties for four-vectors. This worked for velocity so
let’s try with momentum and energy.

We start with momentum. In order to construct a four-vector Pµ for mo-
mentum, let’s try a form which is as similar as possible to the Newtonian
form ~p = m~v. Rest mass (the mass measured in the rest frame of the
object) is a scalar quantity, so

Pµ = mVµ

is a four-vector. Using that Vµ = γ(1, ~v), we can write momentum as

Pµ = mγ(1, ~v) = γ(m, ~p),

where ~p is the Newtonian momentum. Taking the spatial part of this equa-
tion we see that relativistic momentum can be written in three dimensions
simply as

~prelativistic = γm~v, (4)

where ~v is the normal 3-velocity of an object. What is the meaning of
the time component P0 = γm of the momentum 4-vector? In order to
investigate this let us write it in the Newtonian limit. For v << 1 (velocity
much lower than the velocity of light) we can make a Taylor expansion in
v,

P0(v) = P0(v = 0) +
dP0

dv
(v = 0)v +

1

2

d2P0

dv2
(v = 0)v2,

where the derivatives taken at v = 0 are (check it!) P0(v = 0) = m,
dP0/dv(v = 0) = 0 and d2P0/dv2(v = 0) = m. We get

P0 = m +
1

2
mv2.

The last term is just the expression for Newtonian kinetic energy. The
first term is the rest energy of a particle, converted to normal units it can
be written as the more well known E = mc2. The rest energy is the energy
of a particle at rest, it is the energy in the mass of the particle. Thus, the
time component of the momentum four-vector is relativistic energy,

Erelativistic = mγ, (5)

which in the Newtonian limit reduces to the Newtonian kinetic energy plus
an energy term which did not exist in Newtonian physics, the energy of the
mass of the particle. So the 4-vector Pµ is not just a momentum 4-vector,
it is the momentum-energy 4-vector which time component is energy and
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space component is momentum. It means that energy and momentum are
related in the same way as space and time are. In the same manner as
we talk about spacetime, indicating that space and time are basically two
aspects of the same thing, we can call energy and momentum collectively
as momenergy. The four-vector Pµ is simply the momenergy four-vector.

What is the length of the momenergy four-vector? Using that Pµ = mVµ

we have for the square of the length

PµP
µ = m2VµV

µ = m2.

The length is the square root of m2 which is m. The length of the momen-
ergy four-vector is an invariant and it is thus simply the mass. We have
seen that we can write Pµ = γ(m, ~p) giving (using equations 4 and 5)

Pµ = (Erelativistic, ~prelativistic).

From now on we will drop the subscript ’relativistic’ and always refer to
the relativistic energy and relativistic momentum using E and p. But how
can we be so sure? How can we know that this is the correct expression
for energy and momentum? What is the criterion for a quantity to be en-
ergy or momentum? We know that energy and momentum are conserved
quantities. The total energy and momentum of particles after a collision
should always be the same as the total energy and momentum before the
collision. So this is easy to check: Measure the total energy and momen-
tum of particles before and after a collision, if they are the same we have
found the correct expressions for momenergy. This has been tested thou-
sands of times in particle accelerators with particles moving close to the
speed of light. It turns out that the Newtonian energy and momentum are
not conserved in these collisions. The relativistic energy and momentum
defined as we have done above however, are conserved.

By now we have got used to measure time and space in the same units and
therefore we have also got used to add these quantities ∆x + ∆t without
hesitating. We see that the result of measuring time and space in the same
units is that momentum and energy are also measured in the same units,
the units of mass. We remember that since space and time are measured
in the same units, the speed v is a dimensionless number. The factor γ is
clearly also dimensionless, so the momentum p = mγv can be measured in
the units of mass (kg). The same goes for energy E = mγ, which also has
dimension mass. So both energy and momentum are measured in kg and
these quantities can therefore be added, just as we can add intervals in
time and distances in space. The momenergy four-vector is Pµ = (E, ~p),
taking the scalar product we have (remembering the result above that the
length of Pµ is just m),

PµP
µ = E2 − p2 = m2,

we can thus write energy in terms of momentum as

E =
√

m2 + p2.
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A photon is massless, so for photons this relation is just

E = p,

or by using normal units E = pc which is a more known form of this
expression.

We return to the above example with the airplane and the passing car. You
measure the relativistic energy and momentum of the airplane from the
laboratory frame (the ground) and you wonder what energy and momen-
tum the driver of the car measures for the same airplane. The momenergy
four-vector is a four-vector which means that it can be transformed from
one frame of reference to the other by the Lorentz transformation,

P ′
µ = cµνPν ,

or in matrix form (remember that there were no movements in the y and
z direction) 

E ′

p′x
p′y
p′z




γrel −vrelγrel 0 0
−vrelγrel γrel 0 0

0 0 1 0
0 0 0 1




E
px

py

pz


Giving the following transformation equations for momentum and energy

E ′ = γrelE − vrelγrelpx

p′x = γrelpx − vrelγrelE

where vrel is the relative velocity between the two frames of reference, the
observer on the ground and the car (see figure 5).

We will now use these equations to answer the following question: What
energy and momentum (E ′, p′x) does a person passing you in his car with
a velocity v (relative to you) measure that you have? From your frame
of reference in which you are at rest, your momentum is by definition
zero p = 0 and you energy equals your mass E = m. We will now
transform these quantities to the driver of the car measuring your energy
and momentum to be E ′ and p′. The relative velocity of the car with
respect to you is simply vrel = v. Then the energy and momentum that
the driver in the car measures that you have is simply (using the equations
above, check that you get the same result),

E ′ = γE p′x = −vγE

Note that γ > 1 so the driver in the car measures, not only a larger
absolute momentum, but also larger energy.

From the point of view of Newtonian mechanics this was to be expected:
with respect to the driver you have a non-zero velocity and kinetic energy,
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Figure 5: The observer on the ground measuring a velocity vx for the
airplane, wondering which velocity v′

x the driver of the car measures for
the same airplane.

thus both your momentum and energy are clearly larger with respect to
him than with respect to your rest frame. But from the point of view
of geometry it might seem strange: In your rest frame the four-vector Pµ

only has a time component and no space component. In the frame of the
driver, both the time and space component of the vector are larger than
in your frame. But the length of the momenergy vector Pµ is always the
same, equal to m. Going back to normal 3D geometry this would not be
possible. Imagine a vector ~a = (f, g, 0) and another vector ~b = (2f, h, 0).
If the length of these vectors are the same, then we have that h < g.
We see that from normal geometry you would expect that if the length
of a vector is constant, then if you increase one component of the vector
the other should decrease. The reason for this discrepancy with normal
geometry is that spacetime has Lorentz geometry whereas 3D space has
Euclidean geometry. Lorentz geometry has a minus sign in the definition
of the scalar product (which also defines the length of the vector) making
such an effect possible.

Now you know the basics of the special theory of relativity and you have
got the necessary preparations to start studying the general theory of
relativity. In the general theory of relativity we will study how masses
curve spacetime, making the expression for the line element ∆s different
close to a large mass. This change in the line element changes the dynamics
and gives rise to what we in Newtonian terms call the force of gravity.

14



5 List of expressions you should know by

now

Worldline → page 1
Timelike → page 1
Lightlike → page 1
Spacelike → page 2
Principle of maximal aging → page 3
Wristwatch time → page 3
Scalar → page 7
Four vector → page 7
Four velocity → page 9
Momenergy → page 12

6 Problems

Problem 1 (2–3 hours)

Before embarking on the problems with four vectors and relativistic dy-
namics, we have one more important case to study from the previous
lecture. This is the so-called ’twin paradox’. This long and detailed exer-
cise is very important to gain some basic understanding for the underlying
physics of many of the so-called paradoxes in the theory of relativity.

You are an astronaut traveling to the star Rigel, 800 light years from
Earth. You start at x = x′ = 0 and t = t′ = 0 where (x, t) are Earth
frame coordinates and (x′, t′) are spaceship coordinates. You travel in
your spaceship at a velocity of v = 0.99995. We assume that Earth and
Rigel do not move with respect to each other and that they therefore are
in the same frame of reference.

1. Event A is you departing from Earth. Event B is you arriving at
Rigel. In the Earth frame it took 800/0.99995 ≈ 800.04 years to
arrive at Rigel. We know that for you it took a factor γ = 1/

√
1 − v2

less (∆t = γ∆t′, ∆t is measured in Earth frame, ∆t′ is measured
in spaceship frame). How long time did it take for you (on your
wristwatch) to arrive at Rigel?

2. After arriving at Rigel, you make the necessary scientific measure-
ments (which takes very little time and can therefore be ignored)
and start the return flight. You fly with exactly the same speed
v = 0.99995 towards Earth. Event C is when you arrive back on
Earth. Use the same arguments (or symmetry arguments) to find
the time ∆t and ∆t′ it took from Rigel and back to Earth in the two
frames of reference.

3. If you have done your calculations correct, here is a summary of the
situation: In the Earth frame, it took you 1600.08 years to go to
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Rigel and return. On your wristwatch it took you 16 years to go to
Rigel and back. So while hundreds of generations have passed on
Earth, you return only 16 years older.

4. We will now make the same calculations again, but just switch the
frames: The laboratory frame (x, t) is now the frame of the space-
ship and the moving frame (x′, t′) is the Earth frame. Because of
the principle of relativity we are allowed to switch the roles and
we should arrive at exactly the same result using the same laws of
physics. From this point of view, this is what is happening: You sit
in you spaceship which is now the laboratory frame defined to be
at rest and at x = x′ = 0 at t = t′ = 0 (event A), the Earth starts
moving away from you with velocity v = 0.99995 and Rigel starts
approaching you with the same velocity. After a time ∆t Rigel ar-
rives at your position (event B). We know from previous calculations
that the trip took 8 years in your frame of reference which is now
the laboratory frame. Using again that ∆t = γ∆t′ (and make sure
not to confuse ∆t and ∆t′) show that the clocks on Earth at the
moment when Rigel arrives at your position show 0.08 years. Only
0.08 years had passed on Earth during the 8 year (on your watch)
trip to Rigel.

5. Now, this might look like a paradox, but we will show further down
that it is not. No matter how strange this might sound, it is consis-
tent. The paradox is still to come. After making your investigations
of Rigel, Rigel departs and Earth approaches you again at the speed
of v = 0.99995. Making the same calculations again you will find
that it takes the Earth 8 years to return to you. Let’s again check
carefully how long it takes on the Earth clocks for Earth to return at
your position: At the moment you have finished your investigations,
the Earth clocks show t′ = 0.08 years and your clock shows t = 8
years. It takes Earth again ∆t = 8 years to arrive at your position.
We have as always that ∆t = γ∆t′. How long did it take for Earth
to return to your position measured on Earth clocks?

6. If you made the last calculation correct, this is now the situation: It
took you 16 years from Earth departed to Earth returned. However,
on Earth clocks it took 0.16 years. So while you are 16 years older,
only two months have passed on Earth. Above we found that 1600
years had passed on Earth. Now, this is a paradox!

7. Clearly we made an error somewhere in the calculations. Or maybe
we simply forgot some basic principles from special relativity? It
appears at first sight that the two roles are equal,that we can choose
whether we consider the Earth frame as the laboratory frame or
the spaceship frame as the laboratory frame. But are the two roles
really identical? What is the difference between the two observers,
the Earth observer and the spaceship observer?

8. Don’t read on until you have found an answer to the previous ques-
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tion. Here comes the solution: The difference is that whereas the
Earth observer always stays in the same frame of reference, the
spaceship observer changes frames of reference: The spaceship needs
to accelerate at Rigel in order to change direction and return to
Earth. The Earth does not undergo such an acceleration. The ex-
pression ∆t = γ∆t′ was derived for constant velocity (look back at
its derivation). It is not valid when the velocity is changing. In order
to solve this problem properly one needs to either use general relativ-
ity which deals with accelerations or we can view the acceleration as
an infinite number of different free float frames, frames with constant
velocity, and apply special relativity to each of these frames. We will
not do the exact calculation here, but we will do some considerations
giving you some more understanding of what is happening. We will
now consider three frames of reference. The Earth frame (x, t), the
outgoing spaceship frame (x′, t′) and the returning spaceship frame
(x′′, t′′). Instead of spaceships we will look at it as elevators going
between Earth and Rigel. There are boxes going in both directions.
At x = x′ = 0 and t = t′ = 0 you jump into one of these boxes
leaving for Rigel. There are other observers in other boxes before
you and after you. The situation is depicted in figure 6. In the
following use the Lorentz transformations to transform between the
coordinate systems. We write the distance between Earth and Rigel
in the Earth frame as L0. Event A happens at xA = x′

A = 0 and
tA = t′A = 0. Event B is again the moment when you arrive at Rigel.
At what time tB in the Earth frame do you arrive at Rigel? (express
the answer in terms of L0 and v)

9. Use the Lorentz transformations to find t′B, the time on your wrist-
watch when you arrive at Rigel. Insert numbers and check that you
still find that the trip takes 8 years for you.

10. We now define event B’. At the same time as you arrive at Rigel (in
your frame of reference which is now the frame of the outgoing eleva-
tor),another observer in another box in your elevator (thus another
observer in your frame of reference using clocks synchronized with
yours) passes the Earth at position xB′ = 0. Event B’ is the event
that he looks out and checks what time it is on Earth. So event
B’ takes place at the position of the Earth, but at the same time
as you arrive at Rigel (same time in the outgoing reference frame).
Show that the time tB′ he reads on the Earth clocks can be written
as tB′ = L0/v − vL0. Insert numbers. Hint: You first need to find
the position x′

B′ of event B’ in the outgoing elevator frame.

11. Insert numbers in your previous result. Explain the result which
we found earlier when using the spaceship as the laboratory frame:
Namely that when Rigel arrived at the spaceship, we calculated that
on the Earth clocks only 0.08 years had passed. Why is this not a
surprise? Those who were surprised earlier, do you know understand
which error you made when you got surprised? Which basic principle
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Figure 6: The elevator between Earth and Rigel.

18



of relativity had you forgotten?

12. We learned in the previous question that even if the Earth clocks
were observed at the same moment as the spaceship/elevator arrived
at Rigel (in the outgoing frame), these two events (the observation of
the Earth clocks and the arrival at Rigel) were not simultaneous in
the Earth frame. For you, sitting in the outgoing elevator, only 0.08
years have passed on Earth when you arrive at Rigel. For observers
on the Earth on the other hand, you arrived at Rigel when 800 years
had passed. At Rigel you meet a box in the returning elevator. You
jump over to the box in the returning elevator at event B where you
meet person P who has been traveling in the elevator from far away.
Actually, at the same time (in the Earth frame) as you started your
journey from Earth, person P started his journey from the other side
of Rigel. We call the event when person P started his journey for
event D. Event A and event D are simultaneous in the Earth frame.
In order for you and person P to meet at event B, person P must
have started on a planet a distance 2L0 from Earth (a distance L0

from Rigel) as measured in the Earth frame. In that way you both
cover a distance L0 with the same speed v and therefore you can
both meet at Rigel at time L0/v as measured on Earth clocks. We
call the coordinate system of the returning elevator (x′′, t′′). The
clocks in the system of the returning elevator are set to zero at the
moment when person P starts his journey. In the following, we will
use spacetime intervals instead of the Lorentz transformation: The
reason for this is that the returning elevator is not synchronized with
the Earth frame at x = 0, t = 0. This was assumed when we deduced
the form of the Lorentz transformation which we use in this course.
Therefore, we will now again use invariance of the spacetime interval
to obtain our answers. We will first check what the wristwatch of
person P shows when he meets you at event B. In analogy to your
own travel, it should intuitively show the same as your wristwatch:
Both of you started at t = 0 on Earth clocks as well as on your own
wristwatch. Both of you travel a distance L0 (as measured in the
Earth frame) at velocity v. But we have learned not to trust our
intuition when working with relativity, so let’s check. We will now
consider the spacetime interval ∆sBD in order to find t′′B, the time
on the wristwatch of person P at event B. Write down the space and
time intervals ∆xBD, ∆tBD, ∆x′′

BD and ∆t′′BD. Show that invariance
of the spacetime interval gives

L2
0

v2
− L2

0 = (t′′B)2,

which gives t′′B = L0/(vγ), exactly as we thought. Your wristwatches
agree at event B. Reassuring to see that our intiution still gives som
reasonable results every now and then.

13. We will now try to find out what the time is on Earth for persons in
the returning elevator. In the frame of the outgoing elevator, we used
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a person who was situated in an elevator box at the same position of
the Earth and looked out at the clocks on Earth exactly at the same
time as event B happened (in the frame of the outgoing elevator). We
called this event B’ (looking at the clocks on Earth). We found that
only 0.08 years had passed on Earth when you arrived at Rigel. We
will now make the same check from the returning elevator. A person
in an elevator box of the returning elevator being at the position of
the Earth exactly at the same time as event B happens (now from
the frame of the returning elevator) looks at the clocks on Earth.
We call this event B” (the person in the box at the position of the
Earth looking at the Earth clocks). We will now try to find out
what he saw, i.e. which time tB′′ he observed on the Earth clocks.
For this we will use spacetime interval ∆sDB′′ . Show that the space
and time intervals from each frame are the following:

∆xDB′′ = 2L0

∆tDB′′ = tB′′

∆x′′
DB′′ = L0/γ

∆t′′DB′′ = L0/(γv)

You might be a bit surprised by one of these results, but if you have
doubts, do the following: Make one drawing for event D and one for
event B”. Show the position of the zero-point (the position of person
P is the zero point of the x′′ axis) of each of the x-axes in both plots
and find the distances between events. Did it make it clearer?

14. Use invariance of the spacetime interval to show that

tB′′ =
L0

v
+ L0v

Setting in for numbers this gives you t′′B′′ = 1600.00 years. Surprised?
What has happened? You are still at event B, you made a very fast
jump so almost no time has passed since you were in the outgoing
elevator. But just before the jump, only 0.08 years had passed on
Earth since you started your journey. Now, less than the fraction
of a second later, 1600 years have passed on Earth. So in the short
time that your jump lasted, 1599.92 years passed on Earth! This is
were the solution to the twin paradox is hidden: When you jump,
you change reference frame: You are accelerated. Special relativity
is not valid for accelerated frames (actually one could solve this
looking at the acceleration as an infinite sum of reference frames
with different constant velocities). When you are accelerated, you
experience fictive forces. This does not happen at Earth, the Earth
does not experience the same acceleration. This is the reason for
the asymmetry: If you speed had been constant, you and Earth
could exchange roles and you would get consistent results. But since
you are accelerated in the jump while the Earth is not, there is no
symmetry here, you and the Earth cannot switch roles.
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15. Let’s summerize the situation: In your frame, you started your jour-
ney at t = t′ = 0 and arrived at Rigel at t′ = 8 years. In the
Earth frame you arrived at Rigel after 800.04 years of travel. In
your frame, the clocks on Earth show 0.08 years when you arrive at
Rigel. Only 0.08 years have passed on Earth at the time you arrive
at Rigel, seen from your frame. Then you jump to the returning el-
evator. Your watch still shows t′ = t′′ = 8 years. But now you have
switched frame of reference. Now suddenly 1600 years have passed
on Earth, clocks on Earth went from 0.08 years to 1600 years during
the jump, as seen from your frame. As seen from Earth, the clock
showed 800.04 years during your jump.

16. Seen from the Earth, you need 800.04 years to return, so the total
time of your travel measured in the frame of reference of the Earth
is t = 1600.08 years. In your own frame, the return trip took 8
years (by symmetry to the outgoing trip), so the total travel time
for yourself is 16 years. But according to your frame of reference, the
Earth clocks again aged 0.08 years during your return trip (by sym-
metry to the outgoing trip). When you were at Rigel, the observer
in your frame of reference saw that the Earth clocks showed 1600
years. In your frame, 0.08 years passed on Earth during your return
trip. So consistenly you find the Earth clocks to show 1600.08 years
when you set your feet on the Earth again. This is also what we find
making the calculation in the Earth frame 800.04 × 2 = 1600.08.
But hundreds of generations have passed, and you have only aged
16 years. But after all these strange findings I’m sure you find this
pretty normal by now. Everything clear? Read through one more
time.

Problem 2 (30–45 min.)

You are in the laboratory frame watching two cars passing from position
x = 0 at t = 0 (event 1) and arriving simultaneously at position x = L
some time t = TL (event 2) later (all coordinates taken in the laboratory
frame). Car A moves with constant velocity vA = c/2 whereas car B
accelerates from v = 0 at x = 0 and accelerates such that it reaches x = L
simultaneously with car A. In the following you will draw some spacetime
diagrams. We are not interested in exact numbers in this exercise, only
roughly correct relative distances and slopes on the worldlines showing
that you have understood the basic principles.

1. Make a spacetime diagram in the laboratory frame showing the
worldlines of yourself and the two cars.

2. Make a spacetime diagram in the reference frame of car A showing
the three same worldlines.

3. Make a spacetime diagram in the reference frame of car B showing
the three same worldlines.
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4. Return to the first spacetime diagram, the diagram for the labora-
tory frame. The wristwatch of the driver of car A makes exactly 10
ticks from event 1 to event 2. The first tick happens at event 1 and
the last tick happens at event 2. Draw a dot on the worldline of car
A at roughly the position of each of the ticks. The important point
here is to have correct relative spacings between each tick.

5. The driver of car B has an identical wristwatch making ticks with
exactly the same frequency in the rest frame of the watch. Use the
principle of maximal aging to judge whether driver B will experience
more or less ticks on his watch from event 1 to event 2.

6. Again, draw a dot on the worldline of car B at the positions where
the wristwatch of the driver makes a tick. Again, the exact position
is not important, but the relative distances between the dots should
be correct. Hint: For each dot you draw, look at the slope of the
worldline.

Problem 3 (10–30 min.)

A four vector is defined to be a vector in spacetime which transforms
from one frame of reference to another (from xµ to x′

µ) using the Lorentz
transformation

x′
µ = cµνxν .

To check if a four dimensional vector is a four-vector, you need to check
whether this relation is true or not. We will now test if four-vectors follow
the normal rules of addition, that the sum of two four-vectors is really a
four-vector. Assume you have two four-vectors Aµ and Bµ. You sum the
two to make a vector Dµ,

Dµ = Aµ + Bµ.

You now need to show that the result, Dµ, is also a 4-vector. Use the
transformation properties of Aµ and Bµ to obtain these vectors in a differ-
ent frame A′

µ and B′
µ. Find an expression for the sum of the two vectors,

D′
µ, in the other frame expressed by Dµ in the laboratory frame and show

that Dµ is indeed a four vector.

Problem 4 (90 min.–2 hours)

A free neutron has a mean life time of about 12 minutes after which it
disintegrates into a proton, an electron and a neutrino. We will ignore
the neutrino here, assuming that the only products of disintegration are a
proton and an electron. A neutron moves along the positive x axis in the
laboratory frame with a velocity v = 0.99. It disintegrates spontaneously
and a proton and an electron is seen to continue in the same direction
as the neutron. Use tables to find the mass of the electron, proton and
neutron. We will try to calculate the speed of the proton and the electron
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in the lab-frame. The easiest way to do this is in the rest frame of the
neutron where the neutron has a very simple expression for energy and
momentum. In the lab frame this would have been a lot more work since
all three particles have velocities.

1. In the rest frame of the original neutron (which has now disinte-
grated), what was the total energy and momentum of the neutron
before disintegration? Write the answer in terms of a momenergy
four-vector P ′

µ(neutron).

2. In the rest frame of the original neutron, write the momenergy four-
vector P ′

µ(proton) of the proton expressed in terms of the proton
mass mp and the unknown proton velocity v′

p in the neutron rest
frame.

3. Still in the neutron frame, write the expression for the momenergy
four-vector P ′

µ(electron) in terms of the electron mass me and the
unknown electron velocity v′

e measured in the neutron frame.

4. Use conservation of momenergy

P ′
µ(neutron) = P ′

µ(proton) + P ′
µ(electron),

to find the velocity of the proton and the electron in the rest frame
of the original neutron. (insert numbers). Hint: This can be ugly
if you don’t do it right: Write the momentum part of the equation
in terms of γ-factors only, then substitute for one of the γ from
the energy part of the eqaution. Then you will avoid second order
equations. Note that there are two possible solutions here: see if
you understand why. Choose one of the solutions and continue with
that in the rest of this exercise.

5. Use the transformation properties for four-vectors

P ′
µ(electron) = cµνPν(electron),

to find the energy and momentum of the electron and proton in the
laboratory frame. (insert numbers:what units do your results have
if you keep c = 1).

6. Use the numbers you have obtained for energy or momentum to
obtain the speed of the electron and proton in the laboratory frame.

7. As an independent check (and to see an alternative way of doing it),
use the relativistic formula for addition of velocities to obtain the
speed of the proton and electron in the lab frame, using only the
speed you have obtained for the proton in the neutron frame as well
as the speed of the neutron seen from the lab frame.

8. For those who like long and ugly calculations only: Do everything
from the beginning, but use only the lab-frame to obtain the same
results. Do you see the advantage of using 4-vectors and change of
frames?
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Problem 5 (90 min.–2 hours)

An electron and a positron (the anti particle of the electron having the
same mass) are approaching each other with the same velocity v = 0.995 in
opposite directions in the laboratory frame. In the collision, both particles
are annihilated and two photons are produced. One photon travels in the
positive x direction, the other in the negative x direction. Use tables to
find the mass of an electron.

1. What is the velocity of the positron in the rest frame of the electron?

2. Write down the momenergy four-vectors Pµ(electron) and Pµ(positron)
of the positron and the electron in the laboratory frame (use num-
bers).

3. Use the transformation properties of four-vectors to write down
the momenergy four-vectors P ′

µ(electron) and P ′
µ(positron) of the

positron and the electron in the rest frame of the electron (again use
numbers).

4. Show that the momenergy four-vector of a photon traveling in the
positive x-direction can be written

P γ
µ = (E, E, 0, 0),

where E is the energy of the photon.

5. Use conservation of momenergy in the laboratory frame to argue
that the two photons must have the same energy seen from the
laboratory frame.

6. What is the energy of the photons and thereby the wavelength in
the laboratory frame?

7. Use transformation properties for four-vectors to show that the en-
ergy E ′ of a photon in a frame moving with velocity v with respect
to the laboratory frame (where the photon has energy E) is

E ′ = Eγ(1 − v)

8. What is the energy of each of the two photons in the rest frame of
the electron?

9. Use the expression for E ′ in terms of E to derive the relativistic
Doppler formula

∆λ

λ
=

(√
1 + v

1 − v
− 1

)

10. Show that the relativistic Doppler formula is consistent with the
normal Doppler formula for low velocities. Hint: Make a Taylor
expansion of f(v) =

√
(1 + v)/(1 − v) for small v.
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AST1100 Lecture Notes

11–12 The cosmic distance ladder

How do we measure the distance to distant objects in the universe? There
are several methods available, most of which suffer from large uncertain-
ties. Particularly the methods to measure the largest distances are often
based on assumptions which have not been properly verified. Fortunately,
we do have several methods available which are based on different and in-
dependent assumptions. Using cross-checks between these different meth-
ods we can often obtain more exact distance measurements.

Why do we want to measure distances to distant objects in the universe?
In order to understand the physics of these distant objects, it is often
necessary to be able to measure how large they are (their physical ex-
tension) or how much energy that they emit. When looking through a
telescope, what we observe is not the physical extension or the real energy
that the object emits, what we observe is the appaerent magnitude and
the angular extension of an object. We have seen several times during this
course that in order to convert these to absolute magnitudes (and thereby
luminosity/energy) and physical sizes we need to know the distance (look
back to the formula for converting appaerent magnitude to absolute mag-
nitude as well as the small angle formula for angular extension of distant
objects). In cosmology it is important to make 3D maps of the structure
in the universe in order to understand how these structures originated in
the Big Bang. To make such 3D maps, again knowledge of distances are
indispensable.

There are 4 main classes of methods to measure distances:

1. Triognometric parallax (or simply parallax)

2. Methods based on the Hertzsprung-Russel diagram: main sequence
fitting

3. Distance indicators: Cepheid stars, supernovae and the Tully-Fisher
relation

4. The Hubble law for the expansion of the universe.

We will now look at each of these in turn.
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1 Parallax

Shut your left eye. Look at an object which is close to you and another
object which is far away. Note the position of the close object with respect
to the distant object. Now, open you left eye and shut you right. Look
again at the position of the close object with respect to the distant. Has it
changed? If the close object was close enough and the distant object was
distant enough, then the answer should be yes. You have just experienced
parallax. The apparent angular shift of the position of the close object with
respect to the distant is called the parallax angle (actually the parallax
angle is defined as half this angle). The further away the close object is,
the smaller is the parallax angle. We can thus use the parallax angle to
measure distance.

In figure (1) we show the situation: It is the fact that your two eyes are
located at different positions with respect to the close object that causes
the effect. The larger distance between two observations (between the
’eyes’), the larger the parallax angle. The closer the object is to the two
points of observation, the larger the parallax angle. From the figure we
see that the relation between parallax angle p, baseline B (B is defined
as half the distance between your eyes or between two observations) and
distance d to the object is

tan p =
B

d
.

For small angles, tan p ≈ p (when the angle p is measured in radians)
giving,

B = dp, (1)

which is just the small angle formula that we encountered in the lectures on
extrasolar planets. For distant objects we can use the Sun-Earth distance
as the baseline by making two observations half a year apart as depicted
in figure 2. In this case the distance measured in AU can be written (using
equation (1) with B = 1 AU)

d =
1

p
AU ≈ 206265

p′′
AU.

Here p′′ is the angle p measured in arcseconds instead of radians (I just
converted from radians to arcseconds, check that you get the same result!).
For a parallax of one arcsecond (par-sec), the distance is thus 206265 AU
which equals 3.26 ly. This is the definition of one parsec (pc). We can
thus also write

d =
1

p′′
pc.

The Hipparcos satellite measured the parallax of 120 000 stars with a
precision of 0.001′′. This is far better than the precision which can be
achieved by a normal telescope. A large number of observations of each
star combined with advanced optical techniques allowed for such high
precision even with a relatively small telescope. With such a precision,
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Figure 1: Definition of parallax: above is a face seen from above looking
at an object at distance d. Below is the enlarged triangle showing the
geometry.

Figure 2: The Earth shown at two different positions half a year apart.
The parallax angle p for a distant object at distance d is defined with
respect to the Earth-Sun distance as baseline B.
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distances of stars out to about 1000 pc (= 1 kpc) could be measured. The
diameter of the Milky Way is about 30 kpc so only the distance to stars
in our vicinity can be measured using parallax.

2 The Hertzsprung-Russell diagram and

distance measurements

You will encounter the Hertzsprung-Russell (HR) diagram on several oc-
cations during this course. Here you will only get a short introduction and
just enough information in order to be able to use it for the estimation of
distances. In the lectures on stellar evolution, you will get more details.

There are many different versions of the HR-diagram. In this lecture we
will study the HR-diagram as a plot with surface temperature of stars on
the x-axis and absolute magnitude on the other. In figure 3 you see a
typical HR-diagram: Stars plotted according to their surface temperature
(or color) and absolute magnitude. The y-axis shows both the luminosity
and the absolute magnitude M of the stars (remember: these are just two
different measures of the same property, check that you understand this).
Note that the temperature increases towards the left: The red and cold
stars are plotted on the right hand side and the warm and blue stars on
the left.

We clearly see that the stars are not randomly distributed in this diagram:
There is an almost horizontal line going from the left to right. This line
is called the main sequence and the stars on this line are called main
sequence stars. The Sun is a typical main sequence star. In the upper
right part of the diagram we find the so-called giants and super-giants,
cold stars with very large radii up to hundreds of times larger than the
Sun. Among these are the red giants, stars which are in the final phase of
their lifetime. Finally, there are also some stars found in the lower part of
the diagram. Stars with relatively high temperatures, but extremely low
luminosities. These are white dwarfs, stars with radii similar to the Earth.
These are dead and compact stars which have stopped energy production
by nuclear fusion and are slowly becoming colder and colder.

In the lectures on stellar evolution we will come back to why stars are not
randomly distributed in a HR-diagram and why they follow certain lines
in this diagram. Here we will use this fact to measure distances. The HR-
diagram in figure 3 has been made from stars with known distances (the
stars were so close that their distance could be measured with parallax).
For these stars, the absolute magnitude M (thus the luminosity, total
energy emitted per time interval) could be calculated using the apparent
magnitude m and distance r,

M = m − 5 log10

(
r

10 pc

)
. (2)

4



Figure 3: The Hertzsprung-Russell diagram.

HR-diagrams are often made from stellar clusters, a collection of stars
which have been born from the same cloud of gas and which are still
gravitationally bound to each other. The advantage with this is that all
stars have very similar age. This makes it easier to predict the distribution
of the stars in the HR-diagram based on the theory of stellar evolution.
Another advantage with clusters is that all stars in the cluster have roughly
the same distance to us. For studies of the main sequence, so-called open
clusters are used. These are clusters containing a few thousand stars and
are usually located in the galactic disc of the Milky Way and other spiral
galaxies.

Now, consider that we have observed a few hundred stars in an open
cluster which is located so far away that parallax measurements are im-
possible. We have measured the surface temperature (how?) and the
apparent magnitude of all stars. We now make an HR-diagram where we,
as usual, plot the surface temperature on the x-axis. However, we do not
know the distance to the cluster and therefore the absolute magnitudes
are unknown. We will have to use the apparent magnitudes on the y-axis.
It turns out that this is not so bad at all: Since the cluster is far away, the
distance to all the stars in the cluster is more or less the same. Looking
at equation (2), we thus find,

M − m = −5 log10

(
r

10 pc

)
= constant,

for all stars in the cluster. The HR-diagram with apparent magnitude
instead of absolute magnitude will thus show the same pattern of stars
as the HR-diagram with absolute magnitudes on the y-axis. The only
difference is a constant shift m − M in the magnitude of all stars given
by the distance of the cluster. Thus, by finding the shift in magnitude
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between the observed HR-diagram with apparent magnitudes and the HR-
diagram in figure (3) based on absolute magnitudes, the distance to the
cluster can be found. This method is called main sequence fitting.

Example

We observe a distant star cluster with unknown distance, measure the tem-
perature and apparent magnitude of each of the stars in the cluster and
plot these results in a diagram shown in figure 4 (lower plot) (note: spec-
tral class is just a different measure of temperature, we will come to this
in later lectures). In the same figure (upper plot) you see the HR-diagram
taken from a cluster with a known distance (measured by parallax). Since
the distance is known, the apparent magnitudes could be converted to
absolute magnitudes and for this reason we plot absolute magnitude on
the y-axis for this diagram. We know that the main sequence is similar in
all clusters since stars evolve similarly. For this reason, we know that the
two diagrams should be almost identical. We find that by shifting all the
observed stars in the lower diagram upwards by 2 magnitudes (to higher
luminosities but lower magnitudes), the two diagrams will look almost
identical (look at the figure and check that you agree!). Thus, there is a
difference between the apparent magnitude and the absolute magnitude
of M − m = −2 and the distance is found by

−2 = −5 log10

(
r

10 pc

)
,

giving r = 25 pc.

Main sequence fitting can be used out to distances of about 7 kpc, still not
reaching out of our galaxy. We now see why we use the phrase ’cosmic
distance ladder’. The parallax method reaches out to about 1000 pc.
After that, main sequence fitting needs to be used. But in order to use
main sequence fitting, we needed a calibratet HR-diagram like figure 3.
But in order to obtain such a diagram, the parallax method needed to be
used on nearby clusters. So we need to go step by step, first the parallax
method which we use to calibrate the HR-diagram to be used for the main
sequence fitting at larger distances. Now we will continue one more step
up the ladder. We use stars in clusters which distance is calibrated with
main sequence fitting in order to calibrate the distance indicators to be
used for larger distances.

3 Distance indicators

Again the method is based on equation (2). We can always measure the
apparent magnitude m of a distant object. From the equation, we see that
all we need in order to obtain the distance is the absolute magnitude. If
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Figure 4: The HR-diagrams for the example exercise (note: spectral class
is just a different measure of temperature). The upper plot shows the
HR-diagram of a cluster with a known distance. Since the distance is
known, we have been able to convert the apparent magnitudes to absolute
magnitudes and we therefore plot absolute magnitudes on the y-axis. The
lower plot is the HR-diagram of a cluster with unknown distance. Because
of the unknown distance, we only have information about the apparent
magnitude of the stars and therefore we now have apparent magnitude on
the y-axis.
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we know the absolute magnitude (luminosity) for an object, we can find
its distance. But how do we know the absolute magnitude? There are a
few classes of objects, called standard candles, which reveal their absolute
magnitude in different ways. Examples of these ’standard candles’ can be
Cepheid stars or supernova explosions.

Another class of distance indicators are the so-called ’standard rulers’. The
basis for the distance determination with standard rulers is the small-angle
formula,

d = θr,

where d is the physical length of an object, r is the distance to the object
and θ is the apparent angular extension (length) of the object. We can
often measure the angular extension of an observed object. All that we
need in order to find the distance is the physical length d. There are some
objects for which we know the physical length. These objects are called
standard rulers. For instance a special kind of galaxy which has been
shown to always have the same dimensions could be used as a standard
ruler.

3.1 Cepheid stars as distance indicators

Several stars show periodic changes in their apparent magnitudes. This
was first thought to be caused by dark spots on a rotating star’s surface:
When the dark spots were turned towards us, the star appeared fainter,
when the spots were turned away from us, the star appeared brighter. To-
day we know that these periodic variations in the star’s magnitude is due
to pulsations. The star is pulsating and therefore periodically changing
its radius and surface temperature.

The Milky Way has two small satellite galaxies orbiting it, the Large and
the Small Magellanic Cloud (LMC and SMC). They contain 109 − 1010

stars, less than one tenth of the number of stars in the Milky Way and are
located at a distance of about 160 000 ly (LMC) and 200 000 ly (SMC)
from the Sun. In 1908, Henrietta Leavitt at Harvard University discovered
about 2400 of these pulsating stars in the SMC. The pulsation period of
these stars were found to be in the range between 1 and 50 days. These
stars were called Cepheids named after one of the first pulsating stars to be
discovered, δ Cephei. She found a relationship between the stars’ apparent
magnitude and pulsation period. The shorter/longer the pulsation period,
the fainter/brighter the star. Since all these stars were in the SMC they
were all at roughly the same distance to us. We have seen above that
for stars at the same distance, there is a constant difference M − m in
apparent and absolute magnitude. So the stars with a larger/smaller
apparent magnitude also had a larger/smaller absolute magnitude. Since
absolute magnitude is a measure of luminosity, what she had found was a
period-luminosity relation.
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Pulsating stars with higher luminosity were thus found to be pulsating
with longer periods, pulsating stars with low luminosity were found to be
pulsating with short periods. We can now reverse the argument: By mea-
suring the period one can obtain the luminosity. There was one problem
however: The method could not be calibrated as the distance to the SMC
was unknown and therefore also the constant in m − M = constant was
unknown. Without this constant one cannot find M . One had to find
Cepheids in our vicinity for which the distance was known. Only in that
way could this constant and thus the relation between period and absolute
magnitude be established.

Today the distance to several Cepheids in our galaxy are known by other
methods. One of the most recent measurements of the constants in the
period-luminosity relation came from the parallax measurements of several
Cepheids by the Hipparcos satellite. The relation was found to be

MV = −2.81 log10 Pd − 1.43,

where Pd is the period in days. Here MV is the absolute magnitude in
the Visual part of the electromagnetic spectrum instead of the normal
magnutide M which is based on the flux integrated over all wavelengths
λ. Before describing in detail the difference between M and MV , we will
end our discussion on the Cepheid stars.

When pulsating stars were first used to measure distances one did not
know that there are three different types of pulsating stars with different
period-luminosity relations:

1. The classical Cepheids which belong to a class of giants, are very
luminous stars. These are the most useful distance indicators for
large distances because of their high luminosity.

2. W Virginis stars, or type II Cepheids are pulsating stars which on
average have lower luminosity than the classical Cepheids.

3. RR Lyrae stars are small stars which usually have less mass than the
Sun. Their luminosity is much lower than the luminosity of classical
Cepheids and RR Lyrae stars are therfore less useful for distance
determination at large distances. The advantage with RR Lyrae
stars however, is that they are much more numerous than classical
Cepheids.

When Edwin Hubble tried to estimate the distance to our neighbour
galaxy Andromeda, he obtained a distance of about one million light years
whereas the real distance is about twice as large. The reason for this er-
ror was that he observed W Virginis stars in Andromeda and applied the
period-luminosity relation for classical Cepheids, thinking that they were
the same. In this course we will mainly discuss the classical Cepheids.

Since Cepheids are very lumious (about 103 to 104 times higher luminosity
than the Sun) they can be observed in distant galaxies. In order to de-
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termine the distance of a whole galaxy it suffices to find Cepheid stars in
that galaxy and determine their distance. In this manner, the distance to
several galaxies out to about 30 Mpc has been measured. Beyond 30 Mpc
other methods need to be applied.

At the moment we will use the period-luminosity relation for Cepheids to
determine distances without questioning why it works. When we come
to the lectures on stellar structure we will study the physics behind these
pulsations and see if we can deduce the period-luminosity relation theo-
retically by doing physics in the interior of stars.

We have now learned about our first distance indicator: We can find the
absolute magnitude MV at visual wavelength of Cepheids by observing
their plusation period. Having the absolute magnitude MV we can find
the distance. We will now look at a different approach to find MV for
a distant object, but first we will discuss some extended definitions of
magnitudes.

3.2 Magnitudes and color indices

Looking back at the definition of absolute magnitude, we see that we can
write the absolute magnitude M as

M = M ref − 2.5 log10

(
F (10 pc)

F ref(10 pc)

)
= M ref − 2.5 log10

(
L

Lref

)
,

where Mref and Fref are the absolute magnitude and flux (observed flux if
the distance had been 10 pc) of a reference star used for calibration (as
we have seen before, the star Vega with its magnitude defined to be 0, has
often been used for this purpose). The flux is here the total flux of the
star integrated over all wavelengths

F =

∫ ∞

0

F (λ)dλ. (3)

The magnitude M which is based on flux integrated over all wavelengths
is called the bolometric magnitude.

The visual magnitude MV on the other hand, is based on the flux over a
wavelength region defined by a filter function SV (λ). The filter function is
a function which is centered at λ = 550 nm with an effective bandwidth of
89 nm. The flux FV which is used instead of F to define visual magnitude
can be written as

FV =

∫ ∞

0

F (λ)SV (λ)dλ.

Compare with expression (3): The main difference is that a limited wave-
length range is selected by SV (λ). The magnitude is then defined as

MV = M ref
V − 2.5 log10

(
FV

F ref
V

)
.
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As for the bolometric magnitude, the relation between absolute and ap-
parent visual magnitude is also given by

MV − mV = −5 log10

(
r

10 pc

)
.

The concept of the visual magnitude originates from the fact that detectors
normally do not observe the flux over all wavelengths. Instead detectors
are centered on a given wavelength and integrate over wavelengths around
this center wavelength in a given bandwidth. There are three of these filters
which are in common use:

• U-filter (ultraviolet), λ0 = 365 nm, ∆λFWHM = 68 nm

• B-filter (blue), λ0 = 440 nm, ∆λFWHM = 98 nm

• V-filter (visual), λ0 = 550 nm, ∆λFWHM = 89 nm

The absolute magnitudes MV , MB and MU are used to define color indices.
These color indices (U − B) and (B − V ) are defined as

U − B = MU − MB = mU − mB,

B − V = MB − MV = mB − mV .

Note that these indices are written as a difference in apparent or absolute
magnitudes: The color indices are independent of distance and will there-
fore give the same results if they are obtained using apparent magnitudes
or absolute magnitudes (check that you can show this mathematically!).
These indices are used to measure several properties of a star related to
its color. The period-luminosity relation for a Cepheid can be improved
using information about its color in terms of the (B − V ) color index as

MV = −3.53 log10 Pd − 2.13 + 2.13(B − V ).

For Cepheids, the B−V color index is usually in the range 0.4 to 1.1. Thus,
a more exact MV and thereby a more exact distance (using relation (2))
can be obtained using the additional distance independent information
contained in the color of the star. It suffices to observe the star with three
color filters instead of one to obtain this additional information.

3.3 Supernovae as distance indicators

One of the most energetic events in the Universe are the Supernova ex-
plosions. In such an explosion, one star might emit more energy than the
total energy emitted by all the stars in a galaxy. For this reason, super-
nova explosions can be seen at very large distances. The last confirmed
supernova in the Milky way was seen in 1604 and was studied by Kepler.
It reached an appaerent magnitude of about −2.5, similar to Jupiter at
its brightest. There have been other reports of supernovae in the Milky
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way during the last 2000–3000 years, both in Europe and Asia. Some of
these were so bright that they were seen clearly in the sky during daylight.
Written material from Europe, Asia and the middle East all report about
a supernova in 1006 which was so bright that one could use it to read at
night time. The nearest supernova in modern times, called SN1987A, was
observed in 1987 in the Large Magellanic Cloud at a distance of 51 kpc.
It was visible by the naked eye from the southern hemisphere.

Supernovae can be classified as type I or type II,

1. Type I supernovae: These explosions show no hydrogen lines. There
are three sub types, defined according to their spectra: Type Ia, Ib
and Ic.

2. Type II supernovae: These are explosions with strong hydrogen
lines. Type II supernova have several properties in common with
type Ib and Ic.

It is now clear that supernovae of type Ib, Ic and II are core collapse
supernovae. This is a star ending its life in a huge explosion, leaving behind
a neutron star or a black hole. In the lectures on stellar evolution we will
come back to the details of a core collapse supernova. Type Ia supernovae
are usually brighter. These have the property which is desirable for a
standard candle: Their luminosity is relatively constant and there is a
receipe for finding their exact luminosity. The origin of type Ia supernovae
are still under discussion, but according to the most popular hypothesis,
the explosion occurs in a white dwarf star which has a binary companion.
A white dwarf star is the result of one of the possible ways that a star can
end its life: in the form of a very compact star consisting mainly of carbon
and oxygen which are the end products from the nuclear fusion processes
taking place in the final phase of a star’s life. If a white dwarf is part
of a binary star system (two stars orbitting a common center of mass),
the white dwarf may start accreating material from the other star. At a
certain point, the increased pressure and temperature from the accreted
material may reignite fusion processes in the core of the white dwarf. This
is the cause of the explosion. We will again defer details about the process
to later lectures.

It can be shown that this explosion occurs when the mass of the white
dwarf is close to the so-called Chandrasekhar limit which is about 1.4M�.
Since the mass of the exploding star is always very similar, the luminosity
of the explosions will also be very similar. The absolute magnitude of
a type Ia supernova is MV ≈ MB ≈= −19.3 with a spread of about
0.3 magnitudes. A more exact estimate of the absolute magnitude of a
supernova may be obtained by the light curve. After reaching maximum
magnitude, the supernova fades off during days, weeks or months. By
observing the rate at which the supernova fades, one can determine the
absolute magnitude of the supernova at its brightest.

Again, here we will only use the fact that the absolute magnitude of type
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Ia supernovae can be obtained from its light curve in order to determine
distances. More details about the physical processes giving rise to the
explosion and to the fact that the light curve can be used to obtain the
luminosity will be presented in later lectures. Supernovae can be used to
determine distances to galaxies beyond 1000 Mpc.

3.4 The Tully-Fisher relation

The Tully-Fisher relation is a relation between the width of the 21 cm
line of a galaxy and its absolute magnitude. As we remember, the 21 cm
radiation is radiation from neutral hydrogen (look back at the lecture on
electromagnetic radiation). Spiral galaxies have large quantities of neutral
hydrogen and therefore emit 21 cm radiation from the whole disc. The
21 cm line is wide because of Doppler shifts: Hydrogen gas at different
distances from the center of the galaxy orbits the center at different speeds
giving rise to several different Doppler shifts. We also remember that the
rotation curve for galaxies towards the edge of the galaxy was flat. So,
gas clouds orbiting the galactic center at large distances all have the same
orbital velocity vmax and thus the same Doppler shift. There are therefore
many more gas clouds with velocity vmax than with any other velocity.
The flux at the wavelength corresponding to the Doppler shift

∆λmax

λ0

=
vmax

c
,

is therefore larger than for instance at a wavelength of 21 cm itself. The
result is a peak in the flux of the spectral line at either side of 21 cm at
the wavelength 21±∆λmax cm. The wavelength of this peak is a measure
of the maximal velocity in the rotation curve:

vmax = c
∆λmax

λ0

.

We have seen in a previous lecture that the maximum velocity is related
to the total mass of the galaxy. The higher the maximum velocity, the
higher the mass (why?). If we assume that a higher total mass also means
a higher content of lumious matter and therefore a higher luminosity, it is
not difficult to immagine that a relation can be found between the maxi-
mal speed measured from the 21 cm line and the luminosity, or absolute
magnitude of the galaxy. The relation can be written as

MB = C1 log10 vmax + C2,

where MB is the absolute magnitude at blue wavelenghts and C1 and C2

are constants depending on the type of spiral galaxy. The constant C1

is normally in the range −9 to −10 and C2 in the range 2.7 to 3.3. The
Tully-Fisher relation can be used as a distance indicator out to distances
beyond 100 Mpc.

13



3.5 Other distance indicators

Some other distance indicators:

• The globular cluster luminosity function: Globular clusters are clus-
ters of stars containing a few 100 000 stars. These clusters are usu-
ally orbiting a galaxy. A galaxy has typically a few hundred globular
clusters orbiting. It has been found that the luminosity function, i.e.
the percentage of globular clusters with a given luminosity, is simi-
lar for all galaxies. By finding this luminosity function for galaxies
with a known distance, the globular clusters can be used as distance
indicators for other galaxies.

• The planetary nebula luminosity function: Planetary nebulae (which
have nothing to do with planets) are clouds composed of gas which
dying stars ejected at the end of their lifetime. The planetary nebu-
lae have a known luminosity function which can be used as distance
indicators for distant galaxies.

• The brightest galaxies in clusters: It has been found that the bright-
est galaxies in clusters of galaxies have a very similar absolute magni-
tude in all clusters. They can therefore be used as distance indicators
to clusters of galaxies.

4 The Hubble law

At the top of the distance ladder, we find the Hubble law. Edwin Hubble
discovered in 1926 that all remote galaxies are moving away from us. The
furter away the galaxy, the faster it was moving away from us. This has
later been found to be due to the expansion of the Universe: The galaxies
are not moving away from us, the space between us and distant galaxies
is expanding inducing a Doppler shift similar to that induced by a moving
galaxy. Waves emitted by an object moving away from us have larger
wavelengths than in the rest frame of the emitter. Thus, light from distant
galaxies are red shifted. By measuring the red shift of distant galaxies,
we can measure their velocities, or in reality the speed with which the
distance is increasing due to the expanstion of space. From this velocity
we can find their distance using the Hubble law

v = H0r,

where r is the distance to the galaxy, H0 ≈ 71 km/s/Mpc is the Hubble
constant and v is the velocity measured by the redshift.

v = c
∆λ

λ
.

The Hubble law is only valid for large distances. We will come back to
the Hubble law and its consequences in the lectures on cosmology.
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5 Uncertainties in distance measurements

There are several uncertainties connected with distance measurements.
One of the main problems is caused by interstellar extinction. Our galaxy
contains huge clouds of dust between the stars. Light which passes through
these dust clouds loose flux as

F (λ) = F0(λ)e−τ(λ), (4)

where F (λ) is the observed flux and F0(λ) is the flux we would have
observed had there not been any dust clouds between us and the emitting
object. Finally, the quantity τ(λ) is called the optical depth and is given
by

τ(λ) =

∫ r

0

dr′n(r′)σ(λ, r′).

Here n(r) is the number density of dust grains at distance r from us and
σ(λ, r) is a measure of the probability for a photon to be scattered on
a dust grain. The optical depth is simply an integral along the line of
sight from us to the emitting object of the density of dust grains times the
probability of scattering. The larger the density of dust grains or the larger
the probability of scattering, the larger the optical depth. The optical
depth is a measure of how many photons which are scattered away during
the trip from the radiation source to us. If the scattering probability is
constant along the line of sight (this depends on properties of the dust
grains), we can write the optical depths as

τ(λ) = σ(λ)

∫ r

0

dr′n(r′) = N(r)σ(λ),

where N(r) is the total number of dust grains that the photons encounter
during the trip from the emitter at distance r.

Interstellar extinction increases the apparent magnitude (decreases the
flux) of an object. Photons are scattered away from the line of sight
and the objects appear dimmer. Taking this into account we need to
correct our formula for the relation between the apparent and the absolute
magnitude

m(λ) = M(λ) + 5 log10

(
r

10 pc

)
+ A(λ),

where A(λ) is the total extinction at wavelength λ and m(λ) and M(λ)
are the apparent and absolute magnitudes based on the flux at wavelength
λ only. Using the formula for the difference between two apparent mag-
nitudes in lecture 6, we can write the change in apparent magnitude due
to extinction as

m(λ) − m0(λ) = −2.5 log10

(
F (λ)

F0(λ)

)
= −2.5 log10(e

−τ(λ)) = 1.086τ(λ),
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where also equation (4) was used (check that you can deduce this for-
mula!). Here m0(λ) and F0(λ) is the apparent magnitude and flux we
would have had if there hadn’t been any extinction. Thus, we see that

m(λ) = M(λ) + 5 log10

(
r

10 pc

)
+ 1.086τ(λ).

Clearly, if we use a distance indicator and do not take into account in-
terstellar extinction, we obtain the wrong distance. It is often difficult
to know the exact optical depth from scattering on dust grains. This is
an important source of error in distance measurements. Note that the
extinction does not only increase the apparent magnitude of an object,
it also changes the color. We have seen that the optical depth τ(λ) de-
pends on wavelength λ. The scattering on dust grains is larger on smaller
wavelength. Thus, it affects red light less than blue light with the result
that the light from the object appears redder. This is called interstellar
reddening.

Another source of error in the measurement of large distances in the Uni-
verse is the fact that objects observed at a large distance are also observed
at an earlier phase in the history of the universe. The light from an object
at a distance of 1000 Mpc or 3260 million light years has travelled for 3260
million years or roughly one fourth of the lifetime of the Universe. Thus,
we observe this object as it was 3260 millions years ago. The universe
has been evolving all the time since the Big Bang until today. We do not
know if the galaxies and stars at this early epoch had the same properties
as they have today. Actually, we have good reasons to believe that they
did not. We will come to this later. This could imply that for instance the
relation between light curve and absolute magnitudes of supernovae were
different at that time than today. Using relations obtained from oberva-
tions of the present day universe to observations in the younger universe
may lead to errors in measurements of the distance.

6 Problems

Problem 1 (30 min.–1 hour)

1. A star is observed to change its angular position with respect to very
distant stars by 1′′ in half a year. Assuming that the star does not
have any peculiar velocity with respect to us, what is the parallax
angle for the star? And its distance?

2. What is the parallax angle for our nearest star Proxima Centauri at
a distance of 4.22 ly? (Assume again that the observations are made
with a distance of half a year).

3. An open star cluster is observed to have red stars (surface tem-
perature 3000 − 4000 K) with apparent magnitudes in the range
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m = [10, 12], yellow stars (about 6000 K) in the apparent magni-
tude range m = [6, 9] and a few hotter white stars (10000 K) in the
apparent magnitude range m = [1, 5]. What is the distance to the
cluster? Use the diagram in figure 3.

4. A supernova explosion of type Ia is detected today in a distant
galaxy. Its apparent visual magnitude at maximum was mV = 20.
You still need to wait a few days to obtain the light curve and thereby
the exact absolute magnitude. But you can already find an approx-
imate distance. In which distance range do you expect to find the
supernova?

5. A distant galaxy is measured to have the center of its 21 cm line
(λ0 = 21.2 cm) shifted to λ = 29.7 cm. What is the distance of the
galaxy?

6. If the dust optical depth to the open cluster discussed in the above
problem is τ = 0.2, what is the real distance to the cluster. How
large error did you do not taking into account galactic extinction?

7. What about the supernova: Let us assume that the dust optical
depth to the supernova was τ = 1. How large error did you get in
your distance measurement?
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AST1100 Lecture Notes

13–14 Stars and stellar birth

1 The Hertzsprung-Russell diagram revisited

We have already encountered the Hertzsprung-Russell (HR) diagram, the
diagram where stars are plotted according to their temperature and lumi-
nosity. There are several versions of this diagram, differing mainly in the
units plotted on the axes. The most used units on the x-axis are:

• Temperature

• B-V color index

• spectral classes

We have so far seen temperature on the x-axis. The temperature of a
star is directly related to its color and one can therefore also use the B–V
color index (see the lecture on cosmic distances) on the x-axis. There
is also another another possibility: spectral classes. Stars are classified
according to their spectral class which consists of a letter and a number.
This historical classification is based on the strength of different spectral
lines found in the spectra of the stars. It turned out later that these
spectral classes are strongly related to the temperature of the star: The
temperature of the star determines the state of the different atoms and
therefore the possible spectral lines which can be created.

The letters used in the spectral classification are, in the order of decreas-
ing temperature, O, B, A, F, G, K, M. The warmest O stars have surface
temperatures around 40 000 K, the coldest M stars have surface temper-
atures down to about 2 500 K. Each of these classes are divided into 10
subclasses using a number from 0 to 9. So the warmest F stars are called
F0 and the coldest F stars are called F9.

Normally observational astronomers tend to use either spectral class or
color index which are quantities related to the observed properties of the
star. Theoretical astrophysicists on the other hand, tend to use tempera-
ture which is more important when describing the physics of the star.
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Also the y-axis in an HR-diagram have different units. We have already
seen luminosity and absolute magnitude which are two closely related
quantities. In addition one can use luminosity classes. It turns out that
stars which have the same spectral class but different luminosities also have
some small differences in the spectral lines. These differences have been
shown to depend on the luminosity of the star. There are 6 luminosity
classes, numbered with Roman numerals from I to VI. The most luminous
stars have luminosity class I. Using this classification, the Sun is a G2V
star.

Before we start to discuss the diagram in more detail, let us try to under-
stand what it is telling us. We know that the flux of a star with tempera-
ture T can be expressed using the Stefan-Boltzmann law as F = σT 4. To
obtain the luminosity L, we need to integrate this flux over the full area
4πR2 of the surface of the star giving (why?, check that you understand
this!),

L = 4πR2σT 4.

Looking at the HR-diagram (see figure 1), we see that there are some
spectral classes for which there are stars with many different luminosities.
For instance stars with spectral class K0 have a range in luminosity from
0.5 to 1000 solar luminosities. If we fix T in the relation above (remember:
fixed T means fixed spectral class) , we see than higher luminosity simply
means larger radius. So for a fixed temperature, the higher the star is
located in the HR-diagram the larger radius it has. This also means that
we can find lines of constant radius in the diagram. Fixing the radius to
a constant we get

R2 =
L

4πσT 4
= constant,

so that for stars located along lines following L ∝ T 4 in the diagram, the
radius is the same. In figure 2 some of these lines have been plotted. Note
that these lines go from the upper left to the lower right, a bit similar to
the main sequence. So main sequence stars are stars which have a certain
range of radii. The fact that most of the stars are located on the main
sequence means that the physics of stars somehow prohibits smaller and
larger radii (look at the figure again and check that you understand) . We
will come to this in some more detail later.

Now it is clear why the stars which are situated above the main sequence
are called giants or super giants and the stars well below the main sequence
are called dwarfs. Main sequence stars usually have radii in the range
0.1R� to about 10R�. Giant stars fall in the range between 10R� to
about 100R� whereas super giants may have radii of several 100 solar
radii. The masses of stars range from 0.08M� for the least massive stars
up to about 100M� for the most massive stars. We will later discuss
theoretical arguments explaining why there is a lower and an upper limit
of star masses.

We will now start to look at the evolution of stars, from birth to death.
Stars start out as huge clouds of gas contracting due to their own gravity.
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Figure 1: HertzsprungRussell diagram with 22 000 stars plotted from
the Hipparcos catalog and 1000 from the Gliese catalog of nearby stars.
Stars tend to fall only into certain regions of the diagram. The most
predominant is the diagonal, going from the upper-left (hot and bright)
to the lower-right (cooler and less bright), called the main sequence. White
dwarfs are found in the lower-left, while subgiants, giants, and supergiants
are located above the main sequence. The Sun is found on the main
sequence at absolute magnitude 4.8 (relative luminosity 1) and BV color
index 0.66 (temperature 5780 K, spectral type G2). (Figure:Wikipedia)
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Figure 2: HR-diagram with constant radii lines plotted.
From http://astro.wsu.edu/worthey/astro/html/im-Galaxy/
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Thus a star starts out on the far right side of the HR-diagram, with a
very low temperature. Then, as it contracts, the radius decreases and
the temperature increases. It moves leftwards and finally after nuclear
reactions have begun, the star settles on the main sequence. Where it
settles on the main sequence depends on the mass of the star. As we will
show later, the larger the mass, the higher the luminosity and the higher
the surface temperature. So the more massive stars settles on the left side
of the main sequence whereas the less massive stars settles on the right
side of the main sequence. Stars spend the largest part of their lives on
the main sequence. During the time on the main sequence they move little
in the HR-diagram. Towards the end of their lives, when the hydrogen in
the core has been exhausted, the stars increase their radii several times
becoming giants or supergiants. The surface temperature goes down, but
due to the enormous increase in radius the luminosity increases. After a
short time as a giant, the star dies: Low mass stars die silently, blowing
off the outer layers and leaving behind a small white dwarf star in the
lower part of the HR-diagram. The more massive stars die violently in
a supernova explosion leaving behind a so-called neutron star or a black
hole. We will now discuss the physics behind each of these steps in turn.
Beginning here with star birth: a gas of cloud contracting.

2 The Jeans criterion

A star forms from a cloud of gas, a so-called molecular cloud, undergoing
gravitational collapse. These molecular clouds consist mainly of atomic
and molecular hydrogen, but also contain dust and even more complex
organic molecules. The question is whether a cloud will start collapsing
or not. In the lectures on the virial theorem we saw that the condition for
stability is 2K + U = 0. If the kinetic energy is larger compared to the
potential energy, the system does not stabilize, the gas pressure is larger
than the gravitational forces and the cloud expands. On the other hand,
if the potential energy is dominating, the cloud is gravitationally bound
and undergoes collapse. For a cloud to collapse we thus have the condition
(why?),

2K < |U |.

In the lectures on the virial theorem, we found an expression for the po-
tential energy of the cloud:

U ∝ 3GM2

5R
,

where M is the mass of the cloud and R is the radius. From thermody-
namics, we learn that the kinetic energy of a gas is given by

K =
3

2
NkT,
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where N is the number of particles in the gas, k is the Boltzmann constant
and T is the temperature. We can write N as

N =
M

µmH

, (1)

where m = µmH is the mean mass per gas particle. The mean molecular
weight

µ =
m

mH

,

is simply the mean mass per particle measured in units of the hydrogen
mass mH (check now that expression 1 for N makes sense to you! This is
important!). So the condition 2K < |U | becomes simply

3MkT

µmH

<
3GM2

5R
.

We can write this as a criterion on the mass

M >
5kT

GµmH

R.

This minimum mass is called the Jeans mass MJ which we can write in
terms of the mean density of the cloud as

The Jeans mass

MJ =

(
5kT

GµmH

)3/2(
3

4πρ

)1/2

,

where we used ρ = M/((4/3)πR3) assuming constant density throughout
the cloud. Thus, clouds with a larger mass than the Jeans mass M > MJ

will have 2K < |U | and therefore start a gravitational collapse. We can
also write this in terms of a criterion on the radius of the cloud. Using
again the expression for the density we have the Jeans length (check again
that you can deduce this expression from the expression above).

The Jeans length

RJ =

(
15kT

4πGµmHρ

)1/2

.

A cloud with a larger radius than the Jeans length R > RJ will undergo
gravitational collapse. The Jeans criterion for the collapse of a cloud is a
good approximation in the absence of rotation, turbulence and magnetic
fields. In reality however, all these factors do contribute and far more
complicated considerations are needed in order to calculate the exact cri-
terion.

The collapsing cloud will initially be in free fall, a period when the photons
generated by the converted potential energy are radiated away without
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heating the cloud (the density of the cloud is so low that the photons can
easily escape without colliding with the atoms/molecules in the gas). The
initial temperature of the cloud of about T = 10−100 K will not increase.
After about one million years, the density of the cloud has increased and
the photons cannot easily escape. They start heating the cloud and po-
tential energy is now radiated away as thermal radiation. In the lectures
on the virial theorem we made an approximate calculation of the time
it would take the Sun to collapse to its present size assuming a constant
luminosity. We found a collapse time of about 10 million years. Proper
calculations show that this process would take about 40 million years for
a star similar to the Sun. The contracting star is called a protostar.

When the core of the collapsing protostar has reached sufficiently high
temperatures, thermonuclear fusion begins in the center. The luminosity
starts to get dominated by the energy produced by nuclear fusion rather
than converted potential energy from the gravitational collapse. The pro-
tostar keeps contracting until hydrostatic equilibrium is reached and the
star has entered the main sequence.

3 Settling on the main sequence: Hydro-

static equilibrium

In figure 4 we show a mass element with mass dm inside a star at a radius
r from the center. We know that gravity pulls this element towards the
center. But a main sequence star does not change its radius with time, so
there must be a force working in the opposite direction keeping this mass
element stable at radius r. This force is the pressure. In a main sequence
star, the pressure forces must exactly equal the force of gravity, otherwise
the star would change its radius. This fact, called hydrostatic equilibrium,
gives us an invaluable source of information about a star’s interior. We
can’t observe the interior of a star directly, but the equation of hydrostatic
equilibrium together with other thermodynamic relations combined with
observations of the star’s surface allow detailed computer modeling of the
interior of stars. Here we will deduce this important equation.

In figure 5 we have zoomed in on the mass element dm. Because of the
symmetry of the problem (the fact that gravitation only works radially),
we can assume spherical symmetry, i.e. that density, pressure and tem-
perature are all only a function only of the distance r from the center.
We show the forces of pressure pushing on the mass element from above
and below, as well as the force of gravity. Assuming that the element
is infinitesimally small, there are no gravitational forces pushing on the
sides and the pressure forces on the sides will be equal since the distance
r from the center is the same on both sides. The forces on the sides must
therefore sum up to zero. We will now look at a possible radial movement
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Figure 3: Info-figure: A close-up of one of the famous ”Pillars of Creation”
in the Eagle Nebula (M16), a nearby star-forming region some 2000 pc
away in the constellation Serpens. This pillar of cool interstellar hydrogen
gas and dust is roughly 4 light-years long and protrudes from the interior
wall of a dark molecular cloud. As it is slowly eroded away by strong ul-
traviolet light from nearby stars, small globules of even denser gas buried
within the pillar are uncovered. These globules are most easily seen at the
top of the pillar. They are dense enough to collapse under their own grav-
ity, forming young stars and possibly planetary systems. This color image
is constructed from three separate images taken through filters specially
designed to isolate the light from different gases. Red shows emission
from singly-ionized sulfur atoms, green shows emission from hydrogen,
and blue shows light emitted by doubly-ionized oxygen atoms. (Figure:
NASA, ESA, STScI, J. Hester and P. Scowen)
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Figure 4: The mass element dm inside a main sequence star is not moving.

Figure 5: The mass element dm inside a main sequence star is not moving:
The forces add to zero.
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of the mass element. Newton’s second law on the mass element gives

dm
d2r

dt2
= −F grav − F pressure(r + dr) + F pressure(r),

where all forces are defined to be positive. The minus sign on the two
first forces show that they push towards the center in negative r direction.
The area of the upper and lower sides of the element is dA. Pressure is
defined as force per area, so

P =
F pressure

dA
,

giving

dm
d2r

dt2
= −G

M(r)dm

r2
− P (r + dr)dA + P (r)dA,

(check that you understand where each term comes from here) where M(r)
is the total mass inside radius r:

M(r) =

∫ r

0

dr′4π(r′)2ρ(r′) (2)

The infinitesimal difference in pressure between r and r + dr is dP =
P (r + dr) − P (r). We have

dm

dA

d2r

dt2
= −dm

dA

GM(r)

r2
− dP

We write the mass of the element as the density ρ(r) at radius r times the
volume dAdr of the mass element dm = ρdA dr. Dividing by dr on both
sides gives

ρ
d2r

dt2
= −G

ρM(r)

r2
− dP

dr
.

(Did you understand all parts of the deduction?) For a main sequence
star, the radius is not changing so the mass element cannot have any
acceleration in r direction giving d2r/dt2 = 0. This gives the equation of
hydrostatic equilibrium

dP

dr
= −ρ(r)g(r),

where g(r) is the local gravitational acceleration

g(r) = G
M(r)

r2
.

The equation of hydrostatic equilibrium tells us how the pressure P (r)
must change as a function of radius in order for the star to be stable. In
the following we will study what kind of pressure we might experience
inside a star and which effect it has.

From thermodynamics we learn that the gas pressure in an ideal gas can
be written as
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Ideal gas law

P =
ρkT

µmH

.

An ideal gas is a gas where the atoms or molecules of which the gas consists
do not interact with each other. This is not the case in real gases but often
a good approximation. In the stellar interior, there is a high density of
photons traveling in all possible directions. The photons behave like the
atoms or molecules in a gas. So we may consider the collection of photons
as a photon gas. This photon gas also has a pressure in the same way as
a normal gas has. Thermodynamics tells us that the pressure of a photon
gas is given by

Pr =
1

3
aT 4,

where a = 7.56 × 10−16 J/m3K4 is the radiation constant.

4 Problems

Problem 1 (10–20 min.)

Look at the HR-diagram in figure 1. Assume that you observe a main
sequence star with spectral class G0. The apparent magnitude of the star
is m = 1.

1. Roughly what luminosity and absolute magnitude would you expect
the star to have? (use the diagram)

2. Using this result, can you give a rough approximation of the dis-
tance?

3. Looking again at the HR-diagram. Roughly what is the minimum
and maximum absolute magnitude you would expect the star to
have?

4. What is the range of distances the star could have?

This method for measuring distances is called spectroscopic parallax (al-
though it has nothing to do with normal parallax). I have not included
this method in the lectures on distance measurements. From the answer
to the last question you will understand why it is not a very exact method.

Problem 2 (30–45 min.)

A Giant Molecular Cloud (GMC) has typically a temperature of T = 10 K
and a density of about ρ = 3×10−17 kg/m3. A GMC has been observed at
a distance of r = 200 pc. It’s angular extension on the sky is 3.5′. Assume
the cloud to be spherical with uniform density.
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1. What is the actual radius of the cloud?

2. What is the mass of the cloud?

3. Is the mass larger than the Jeans mass? Is the cloud about to
collapse and form a protostar?

4. A supernova explodes in the vicinity of the star emitting a pressure
wave which passes through the cloud. If an external pressure is
pushing the cloud together, could this possibly lead to a decrease in
the minimum mass required for collapse (give arguments in terms of
K and U)? Argue why a decrease in minimum mass is more probable
than an increase. (Hint: does K really increase for all particles when
you compress the cloud?).

5. Could the supernova thus have contributed to the collapse of a cloud
which has a mass less than the Jeans mass?

6. The galaxy has a fairly uniform distribution of hydrogen in the galac-
tic disc. If a pressure wave is moving around the center of the disc
in a spiral like shape, would this explain why we observe galaxies as
spirals and not as a disc?

Problem 3 (2–3 hours)

We will now assume a very simple model of the Sun in order to show how
one can use the equation of hydrostatic equilibrium to understand stellar
interiors and the nuclear reactions taking place in the stellar cores. We
will assume that the density of the Sun ρ = ρ0 is uniform throughout.

1. Find an expression for the total mass M(r) inside a radius r.

2. We will now assume that the only pressure in the Sun is the gas
pressure from an ideal gas. We ignore the radiation pressure. Insert
this expression for M(r) into the equation of hydrostatic equilibrium
and show that it can be written as

dT

dr
= −4π

3
Gρ0r

µmH

k

3. Integrate this equation from the core at r = 0 to the surface of the
Sun at r = R and show that the temperature Tc in the core of the
Sun can be written

TC = T (R) +
2π

3
GR2ρ0

µmH

k
.

4. Assume that the Sun consists entirely of protons with a mass of
1.67 × 10−27 kg. Use the solar mass of 2 × 1030 kg, the solar radius
of 700 000 km and the surface temperature of the Sun T = 5780 K
to obtain the density ρ0 and thereby the core temperature TC . (By
doing this calculation properly taking into account variations of the
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density with distance from the core, one obtains a core temperature
of about 15 million Kelvin)

5. In the coming lectures, we will learn that hydrogen can fuse to He-
lium by two different processes, the pp-chain and the CNO-cycle.
The pp chain is more efficient at temperatures below 20 million
Kelvin whereas the CNO-cycle starts dominating at temperatures
above 20 million Kelvin. Use your result for the core temperature
of the Sun to decide which of these processes produces most of the
energy in the Sun.

6. Write ρ0 in terms of the mass M and the radius R of the Sun. We
have seen that the surface temperature of the Sun is much smaller
than the core temperature and might therefore be neglected. Show
that the core temperature of a star depends on the mass and radius
as

TC ∝ M

R

7. In later lectures we will discuss in detail the evolution of a star.
We will learn that when the Hydrogen in the core of a star has
been exhausted, the nuclear fusion processes cease. In this case the
pressure forces cannot sustain the force of gravity and the radius
of the core starts shrinking. It will continue shrinking until some
other force can oppose the force of gravity. If Helium, an element
which is now found in large abundances in the core, starts to fuse to
heavier elements this would create a photon pressure high enough to
sustain gravity. A temperature of at least 100 million degrees Kelvin
is needed in order for this fusion process to start. By how much does
the core radius of the Sun need to shrink in order for Helium fusion
to start?

8. In the last case, the radiation pressure is giving the dominant con-
tribution to the forces of pressure. Show that in this case, the tem-
perature of the core can be written as

TC =

(
T (R)4 +

2πG

a
ρ2

0R
2

)1/4

,

again assuming a constant density.

Problem 4 (2–3 hours)

We will now assume a slightly more realistic model of the Sun. Assume
that the density of the Sun as a function of distance r from the core can
be written as

ρ(r) =
ρC

1 + (r/R)2
,

where ρC is the density in the core of the Sun and R is the radius at
which the density has fallen by a factor 1/2 (check this by inserting r = R
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in the expression). In this exercise we will use our knowledge about the
minimum temperature which is needed to obtain nuclear reactions in order
to calculate the density in the solar core.

1. We will now find an expression for the total mass M(r) inside a
radius r using this density profile. In order to perform the integral
in equation (2) we make the substitution x = r/R and integrate over
x instead of r. Show that M(r) can be written

M(r) = 4πρCR3

∫ r/R

0

dx
x2

1 + x2

2. In order to perform such integrals, the Mathematica package is very
useful. Not everybody has access to Mathematica, but a free web
interface exists for performing integrals.

Go to http://integrals.wolfram.com/index.jsp,

type x^2/(1+x^2) and click “Compute online with Mathematica”,

and you get a nice and easy answer. Using this result, together with
the assumption of pure ideal gas pressure, show that the equation
of hydrostatic equilibrium can now be written

d

dr
(ρ(r)T (r)) = −µmH

k
4πGρ2

CR3 r/R − arctan(r/R)

r2

1

1 + (r/R)2
.

3. We now need to integrate this equation from radius 0 to an arbitrary
radius r. Again the substitution x = r/R is useful. Show that the
equation of hydrostatic equilibrium now reads

ρ(r)T (r)−ρCTC = −µmH

k
4πGρ2

CR2

∫ r/R

0

dx

(
1

x(1 + x2)
− arctan(x)

x2(1 + x2)

)

4. To solve this integral you need to use the ‘Integrator’ and type the
following: 1/(x(1+x^2)) and arctan(x)/(x^2(1+x^2)).

Using these results, show that the core temperature Tc can be written

TC = T (r)/(1+x2)+
µmH

k
4πGρCR2

(
1

2
(arctan x)2 +

arctan(x)

x
− 1

)

5. We will now try to obtain values for the central density ρC . In order
to obtain that, we wish to get rid of x and r from the equation.
When x → ∞, that is, when going far from the center, show that
the equation reduces to

TC =
µmH

k
4πGρCR2(

π2

8
− 1)
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6. Before continuing, we need to find a number for R, the distance
from the center where the density has fallen by 1/2. Assume that
considerations based on hydrodynamics and thermodynamics tell us
that the core of the Sun extends out to about 0.2R� and that the
density has fallen to 10 percent of the central density at this radius.
Using this information, show that

R =
0.2R�√

9
≈ 0.067R�.

7. We know that a minimum core temperature of about 15 million
degrees is needed in order for thermonuclear fusion to be an efficient
source of energy production. What is the minimum density in the
center of the Sun? Assume the gas in the Sun to consist entirely
of protons. Express the result in units of the mean density ρ0 =
1400 kg/m3 of the Sun. (More accurate calculations show that the
core density of the Sun is about 100 times the mean density).

In the last two exercises we have used some very simplified models to-
gether with some rough assumptions and observed quantities to obtain
knowledge about the density and temperature in the interior of the Sun.
These exercises were made to show you the power of the equation of hydro-
static equilibrium: By combing this equation with the knowledge we have
about the Sun from observations of its surface together with knowledge
about nuclear physics, we are able to deduce several facts about the solar
interior. In higher courses in astrophysics, you will also learn that there
are more equations than the equation of hydrostatic equilibrium which
must be satisfied in the solar interior. Most of these equations come from
thermodynamics and fluid dynamics. In the real case, we thus have a set
of equations for T (r) and ρ(r) enabling us to do stellar model building,
without using too many assumptions we can obtain the density and tem-
perature of stars at different distances from the center. These models have
been used to obtain the understanding we have today of how stars evolve.
Nevertheless many questions are still open and poorly understood. Partic-
ularly towards the end of a star’s life, the density distribution and nuclear
reactions in the stellar interior become very complicated and the equa-
tions become difficult to solve. But solving these equations is important
in order to understand the details of supernova explosions.

15



AST1100 Lecture Notes

15–16: General Relativity
Basic principles

1 Schwarzschild geometry

The general theory of relativity may be summarized in one equation, the
Einstein equation

Gµν = 8πTµν ,

where Gµν is the Einstein tensor and Tµν is the stress-energy tensor (A
tensor is a matrix with particular properties in the same way as a 4-
vector is a vector with specific properties). This equation is not a part
of this course as tensor mathematics and linear algebra, not required for
taking this course, are needed to understand it. I present it here anyway
as it illustrates the basic principle of general relativity: The stress-energy
tensor on the right hand side contains the energy content of spacetime, the
Einstein tensor on the left hand side specifies the geometry of spacetime.
Thus, general relativity says that the energy content in spacetime specifies
its geometry.

What do we mean by geometry of spacetime? We have already seen two
examples of such geometries, Euclidean geometry and Lorentz geometry.
We have also seen that the geometry is specified by the spacetime interval
(also called line element) ∆s which tells us how distances are measured.
Thus, by inserting the energy content as a function of spacetime coordi-
nates on the right side, the left side gives us an expression for ∆s, i.e. how
to measure distances in spacetime in the presence of mass/energy. Thus,
in the presence of a mass, for instance like the Earth, the geometry of
spacetime is no longer Lorentz geometry and the laws of special relativity
are no longer valid. This should be obvious: Special relativity tells us that
a particle should follow a straight line in spacetime, i.e. a path with con-
stant velocity. This is clearly not the case on Earth, objects do not keep
a constant velocity, they accelerate with the gravitational acceleration.

You might object here: Special relativity says that a particle continues
with constant velocity if it is not influenced by external forces, but here
the force of gravity is at play. The answer to this objection is given
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by a very important concept of general relativity: gravity is not a force.
What we experience as ’the force of gravity’ is simply a result of the
spacetime geometry in the vicinity of masses. The principle of maximal
aging (go back and repeat it now!) tells us that a particle which is not
influenced by external forces follows the longest path in spacetime, i.e.
the path which gives the largest possible proper time. An object falls to
the ground because the geometry of spacetime around a large mass like
Earth is such, that when the object follows the path with the longest
possible path length ∆s, it falls to the ground. It does not continue in a
straight line with constant velocity as it would in a spacetime with Lorentz
geometry.

Few years after Einstein published the general theory of relativity, Karl
Schwarzschild found a general solution to the Einstein equation for the
geometry around an isolated spherically symmetric body. This is one
of the very few analytic solutions to the Einstein equation that exists.
Thus, the Schwarzschild solution is valid around a lonely star, planet or a
black hole. The spacetime geometry resulting from this solution is called
Schwarzschild geometry and is described by the line element:

The Schwarzschild line element

∆s2 =

(
1 − 2M

r

)
∆t2 − ∆r2(

1 − 2M
r

) − r2∆φ2. (1)

There are two things to note in this equation. First, we are using polar
coordinates (r, φ) instead of Cartesian coordinates (x, y). This is a natural
choice for a situation with a well defined center. These are not three
dimensional coordinates: Symmetry allows us to describe the geometry
on any plane passing through the center of the central massive body.
Given two events with spacetime distance ∆s as well as the position of the
central mass, we have three points in space which define a plane on which
we define the polar coordinates. Thus, the r coordinate is a ’distance’
from the center, we will later come back to how we measure this distance.
The φ coordinate is the normal φ angle used in polar coordinates. The
line element for Lorentz geometry in polar coordinates can similarly be
written as

Lorentz line element in polar coordinates

∆s2 = ∆t2 − ∆x2 = ∆t2 − ∆r2 − r2∆φ2.

The second thing to note in the equation for the Schwarzschild line element
is the term 1−2M/r. Here M/r must be dimensionless since it is added to
a number. But we know that mass is measured in kilograms and distances
in meters, so how can this term be dimensionless? Actually, there should
have been a G/c2 here, G = 6.67×10−11 m3/kg/s2 being the gravitational
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constant and c = 3 × 108 m/s being the speed of light. We have that

G

c2
= 7.42 × 10−28 m/kg. (2)

Since M/r has units kg/m, G/c2 is clearly the constant which is missing
here. We are now used to measure time intervals in units of meters. If we
now decide to also measure mass in units of meters, equation (2) gives us
a natural conversion factor.

Mm

Mkg

=
G

c2
,

where Mm is mass measured in meters and Mkg is mass measured in kg.

Thus we have that
1 kg = 7.42 × 10−28 m.

The equation gives us a conversion formula from kg to m. We see that
measuring mass in meters equals setting G/c2 = 1 everywhere in the
formulas. This is equal to what happened when we decided to measure
time in meters, we could set c = 1 everywhere. The reason for measuring
mass in meters is pure laziness, it means that we don’t need to write
this factor all the time when doing calculations. Thus instead of writing
1 − 2MkgG/(rc2) we write 1 − 2M/r where M is now mass measured in
meters. All the physics is captured in the last expression, we have just
got rid of a constant. From now on, all masses will be measured in units
of meters and when we have the final answer we convert to normal units
by multiplying or dividing by the necessary factors of G/c2 and c in order
to obtain the units that we wish.

2 The inertial frame

In the lectures on special relativity we defined inertial frames, or free-
float frames, to be frames which are not accelerated, frames moving with
constant velocity on which no external forces are acting. We can give a
more general definition in the following way: To test if the room where
you are sitting at the moment is an inertial frame, take an object, leave
it at rest with zero velocity. If the object stays at rest with zero velocity,
you are in an inertial frame. If you give the object a velocity v and the
object continues in a straight line with velocity v, you are in an inertial
frame. Clearly, a frame (a room) which is not accelerated on which no
external forces work is an inertial frame according to this definition. But
are there other examples? In general relativity we use the notion of a local
internal frame, i.e. limited regions of spacetime which are inertial frames.
An example of such a local inertial frame is a space craft in orbit around
the Earth. Another example is an elevator for which all cables have broken
so that it is freely falling. All freely falling frames can be local inertial
frames. How do we now that? If an astronaut in the orbiting space craft
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Figure 1: Two boxes in free fall: If they are large enough in either direc-
tion, the objects at rest inside the boxes will start moving. A local inertial
frame needs to be small enough in space and time such that this motion
cannot be measured.

takes an object and leaves it with zero velocity, it stays with zero velocity.
This is why the astronauts experience weightlessness. If a person in a
freely falling elevator takes an object and leaves it at rest, it stays at rest.
Also the person in the elevator experiences weightlessness. Thus, they are
both, within certain limits, in an inertial frame even though they are both
accelerated. Note that an observer standing on the surface of Earth is in
a local inertial frame for a very short period of time: If an observer on
Earth leaves an object at rest, it will start falling, it will not stay at rest:
An observer at the surface of Earth is not in a local inertial frame unless
the time interval considered is so short that the effect of the gravitational
acceleration is not measurable. The only thing that keeps the observer on
the surface of the Earth from being in a local inertial frame is the ground
which exerts an upward force on the observer. If suddenly a hole in the
ground opens below him and he starts freely falling, he suddenly finds
himself in an inertial frame with less strict time limits.

We now need to find out which limitations this inertial frame has. Local
means that the inertial frame is limited in space and time, but we need
to define these limits. In figure 1 we see two falling boxes, box A falling
in the horizontal position, box B falling in the vertical position. Since the
gravitational acceleration is directed towards the center of the Earth, two
objects at rest at either side of box A will start moving towards the center
of the box due to the direction of the acceleration. The shorter we make
the box, the smaller this motion is. If we make the box so short that we
cannot measure the horizontal motion of the objects, we say that the box
is a local inertial frame. The same argument goes for time: If we wait long
enough, we will eventually observe that the two objects have moved. The
inertial frame is limited in time by the time it takes until the motion of
the two objects can be measured. Similarly for box B: The object which
is closer to the Earth will experience a stronger gravitational force than
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the object in the other end of the box. Thus, if the box is long enough, an
observer in the box will observe the two objects to move away from each
other. This is just the normal tidal forces: The gravitational attraction
of the moon makes the oceans on either side of the Earth to move away
from each other: we get high tides. But if the box is small enough, the
difference in the gravitational acceleration is so small that the motion of
the objects cannot be measured. Again, it is a question of time before
a motion will be measured: The local inertial frame is limited in time.
We have thus seen that a local inertial frame can be found if we define
the frame so small in space and time that the gravitational acceleration
within the frame (in space and time) is constant. In these frames, within
the limited spatial extent and limited duration in time, an object which is
left at rest will remain at rest in that frame. The stronger the gravitational
field and the larger the variations in the gravitational field, the smaller in
space and time we need to define our local inertial frame.

We have learned from special relativity that an inertial frame has Lorentz
geometry. Within the local inertial frame, spacetime intervals are mea-
sured according to ∆s2 = ∆t2 −∆x2 and the laws of special relativity are
all valid within the limits of this frame. In general relativity, we can view
spacetime around a massive object as being an infinite set of local iner-
tial frames. When performing experiments within these limited frames,
special relativity is all we need. When studying events taking place so far
apart in space and time that they do not fit into one such local inertial
frame, general relativity is needed. This is why only special relativity is
needed for particle physicists making experiments in particle accelerators.
The particle collisions take place in such a short time that the gravita-
tional acceleration may be neglected: They take place in a local inertial
frame.

We will now call spacetime where Lorentz geometry is valid for flat space-
time. This is because Lorentz geometry is similar to Euclidean geometry
on a flat surface (except for a minus sign). We know that a curved sur-
face, like the surface of the sphere, has spherical geometry not Euclidean
geometry. In the same way, Schwarzschild geometry represents curved
spacetime, the rules of Lorentz geometry are not valid and Schwarzschild
geometry needs to be used. We say that the presence of matter curves
spacetime. Far away from all massive bodies, spacetime is flat and special
relativity is valid.

We can take the analogy even further: Since the surface of a sphere has
spherical and not Euclidean geometry, the rules of Euclidean geometry
may not be used. But if we focus on a very small part of the surface of
a sphere, the surface looks almost flat and Euclidean geometry is a very
good approximation. The surface of the Earth is curved and therefore has
spherical geometry, but since a house is very small compared to the full
surface of the Earth, the surface of the Earth appears to us to have flat
geometry within the house. We use Euclidean geometry when measuring
the area of the house. The same is the case for the curved space: Since
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spacetime is curved around a massive object, we need to use Schwarz-
schild geometry. But if we only study events which are within a small
area in spacetime, spacetime looks flat and Lorentz geometry is a good
approximation.

3 Three observers

In the lectures on general relativity we will use three observers, the far-
away observer, the shell observer and the freely falling observer. We will
also assume that the central massive body is a black hole. A black hole is
the simplest possible macroscopic object in universe: it can be described
by three parameters, mass, angular momentum and charge. Any black
holes which have the same values for these three parameters are identical
in the same way as two electrons are identical. A black hole is a region
in space where the gravitational acceleration is so high that not even
light can escape from it. A black hole can arise for instance when a
massive star is dying: A star is balanced by two forces, the forces of
gravity (which we no longer call forces) trying to pull the star together
and the gas/radiation pressure trying to make the star expand. When
all fuel in the stellar core is exhausted, the forces of pressure are not
strong enough to withstand the forces of gravity and the star collapses.
No forces can stop the star from shrinking to an infinitely small point.
The gravitational acceleration just outside this point is so large that even
light that tries to escape will fall back. The escape velocity is larger than
the speed of light. This is a black hole. Note that the Schwarzschild line
element becomes singular at r = 2M . This radius is called the Schwarz-
schild radius or the horizon. This is the ’point of no return’, any object
(or light) which comes inside this horizon cannot get out. At any point
before the horizon a spaceship with strong engines could still escape. But
after it has entered, no information can be transferred out of the horizon.

The far-away observer is situated in a region far from the central black
hole where spacetime is flat. He does not observe any events directly, but
gets information about time and position of events from clocks situated
everywhere around the black hole. The shell observers live on the surface
of shells constructed around the black hole. Also a spaceship which uses its
engines to stay at rest at a fixed radius r could serve as a shell observer.
The shell observers experience the gravitational attraction. When they
leave an object at rest it falls to the surface of the shell.

There is one more observer which we already discussed in the previous
section. This is the freely falling observer. The freely falling observer
carries with him a wristwatch and registers the position and personal
wristwatch time of events. The freely falling observer is living in a local
inertial frame with flat spacetime. Thus for events taking place within
short time intervals and short distances in space, the freely falling observer
uses Lorentz geometry to make calculations.
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4 The time and position coordinates for the

three observers

Each of the observers have their own set of measures of time and space.
The far away observer uses Schwarzschild coordinates (r, t) and shell ob-
servers use shell coordinates (rshell, tshell). For the freely falling observers,
we will be viewing all events from the origin in his frame of reference (and
we will therefore not need a position coordinate since it will always be
zero) using his wristwatch time which will then always be the proper time
τ . We will now discuss these different coordinate systems and how they
are defined.

When the shell observer wants to measure his position r from the center
of the black hole, he runs into problems: When he tries to lower a meter
stick down to the center of the hole to measure r, the stick just disappears
behind the horizon. He needs to find other means to measure his radial
position. What he does is to measure the circumference of his shell. In
Euclidean geometry, we know that the circumference of a circle is just 2πr.
So the shell observer measures the circumference of the shell and divides
by 2π to obtain his coordinate r. In a non-Euclidean geometry, the radius
measured this way does not correspond to the radius measured inwards.
We define the Schwarzschild coordinate r in this way.

r =
circumference

2π

The r in the expression for the Schwarzschild line element is the Schwarz-
schild coordinate r. Now the shell observers at shell r lower a stick to the
shell observers at shell r′. The length of the stick is ∆rshell. They compare
this to the difference in Schwarzschild coordinate r − r′ and find that
∆rshell 6= ∆r = r− r′. This is what we anticipated, in Euclidean geometry
these need to be equal, in Schwarzschild geometry they are not. We have
obtained a second way to measure the radial distances between shells
using shell distances ∆rshell (note that since the absolute shell coordinate
rshell cannot be measured it is meaningless, only relative shell coordinate
differences ∆rshell between shells can be measured (did you understand
why?)).

We have obtained two different measures of radial distances,

• the Schwarzschild coordinate r defined by the circumference of the
shell. The far-away observer uses Schwarzschild coordinates to mea-
sure distances.

• the shell distances ∆rshell found by physical measurements between
shells.This is the distance which the shell observers can measure
directly with meter sticks and is therefore the most natural measure
for these observers.

What about time coordinates? Again we have two meaures of time,
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• The far-away observer uses far-away time t to measure time. This is
the time t entering in the Schwarzschild line element. Far away time
for an event is measured on a clock which has been synchronized
with the clock of the far-away observer and which is located at the
same location as the event (we will later describe how events can be
timed which such clocks in practice).

• The shell observer uses local shell time tshell: it is simply the wrist-
watch time of the shell observer, the time measured on a clock at
rest at the specified shell. Note that shell observers at different
shells may measure different times intervals ∆tshell and distances
∆rshell between two events depending on which shell they live on.
Shell coordinates are local coordinates.

In order to relate time and space coordinates in the different frames we
will now (as we did in special relativity) use the invariance of the space
time interval (or line element) ∆s. First we will find a relation between
the more abstract far away-time t and the locally measurable shell time
tshell. The shell time is the wristwatch time, or proper time τ of the shell
observers. We will use two events A and B which are two ticks on the
clock of a shell observer. The shell observers are at rest at shell r, so
, ∆rAB = 0 and ∆φAB = 0. Inserting this into the Schwarzschild line
element (equation 1) using that ∆sAB = ∆τAB = ∆tshell (the time period
between A and B measured on shell clocks is by definition the same as
the proper time period between A and B which we have learned is always
equal to the invariant four dimensional line element between these events)

Shell time

∆tshell =

√(
1 − 2M

r

)
∆t. (3)

(Are you sure you see how this expression comes about?) For shell ob-
servers outside the horizon (r > 2M), the local time goes slower by a

factor
√(

1 − 2M
r

)
with respect to the far-away time. We also see that

the smaller the distance r from the center, the slower the shell clock with
respect to the far-away time. Thus, the further down we live in a gravi-
tational field, the slower the clocks run. This has consequences for people
living on Earth: Our clocks tick slower than the clocks in satellites in orbit
around Earth. At the end of this lecture, we will look closer at this fact.

We have now found a relation between time intervals measured on shell
clocks and time intervals measured on clocks synchronized with far-away
clocks. How is the relation between distances measured with Schwarz-
schild coordinates and distances measured directly by shell observers? We
can measure the length of a stick as the spatial distance between two
events taking place at the same time at either end of the stick (see figure
2). For events taking place within short time intervals and short spatial
extensions, the shell observer sees flat spacetime and can therefore use
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Figure 2: The shell observer at shell r measure the proper lenght of a stick
by two simultaneous events A and B on either side of the stick.

Lorentz geometry: ∆s2
shell = ∆t2shell − ∆r2

shell (we will look at a stick which
is aligned with the radial direction, the events therefore take place at the
same φ coordinate so ∆φ = 0). The far-away observer always needs to
use the Schwarzschild line element (equation 1) instead of the Lorentz line
element. Using invariance of the line element we have for two events A
and B (∆sshell(AB) = ∆s(AB)) taking place simultaneously on either side
of the stick

∆t2shell − ∆r2
shell =

(
1 − 2M

r

)
∆t2 − ∆r2(

1 − 2M
r

) ,
where we have set ∆φ = 0. Check that you understand how to arrive at
this expression. Now, we measure the length ∆r of a stick in the radial
direction by measuring the distance between the two simultaneous events
A and B taking place at either end of the stick at spatial distance ∆r. Since
events which are simultaneous for shell observers at a given shell r also
are simultaneous for the far-away observer (equation 3), ∆tshell = ∆t = 0.
Inserting this, we get

∆rshell =
∆r√(

1 − 2M
r

) . (4)

for short distances ∆r close to the shell. Thus, radial distances measured
by the shell observers, lowering meter sticks from one shell to the other
is always larger than the radial distances found by taking the difference
between the Schwarzschild coordinate distances. What about a stick which
is perpendicular to the radial direction? In this case, the observers will
agree on the length of this stick, check that you can deduce this in the
same manner as we deduced the relation for the radial stick.

There is a practical problem in all this: We said that the far-away time
was measured by clocks located at the position of events (which can take
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place close to the central black hole) but which are synchronized with the
far-away clocks. How can we synchronize clocks which are located deep in
the gravitational field and which therefore run slower than the far-away
clock? Let’s imagine the clocks measuring far-away-time to be positioned
at different shells around the black hole. The shell observers design the

clocks such that they run faster by a factor
√(

1 − 2M
r

)
. To synchronize

all these clocks, the far-away observer sends a light signal to all the other
clocks at the moment when he sets his clock to t = 0. The shell observers
know the distance from the far-away observer to the far-away-time clocks
and thus know the time t it took for the light signal to reach their clock.
They had thus already set the clock to this time t and made a mechanism
such that it started to run at the moment when the light signal arrived.
In this way, all far-away-time clocks situated at different positions around
the black hole are synchronized.

Another practical question: How does the far-away observer know the
time and position of events. Each time an event happen close to one of
the far-away-clocks close to the black hole, it sends a signal to the far-away
observer telling the time and position this clock registered for the event.
In this way, the far-away observer does not need to take into account
the time it takes for the signal from the clock to arrive, the signal itself
contains information with the correct far-away-time for the event recorded
on the clock positioned at the same location where the event took place.

In the following we will describe events either as they are seen by the far-
away observer using global Schwarzschild coordinates (r, t), by the shell
observer using local coordinates (rshell, tshell) or the freely falling observer
also using local coordinates. Before proceeding, make a drawing of all
these observers, their coordinates and the relation between these different
coordinates.

5 The principle of maximum aging revisited

In the lectures on special relativity we learned that the principle of max-
imum aging tells objects in free float to move along paths in spacetime
which give the longest possible wristwatch time τ which corresponds to
the longest possible spacetime interval s. We also used that for Lorentz
geometry, the longest (in terms of s or τ) path between two points is the
straight line, i.e. the path with constant velocity. We never proved the
latter result properly. We will do this now, first for Lorentz geometry and
then we will use the same approach to find the result for Schwarzschild
geometry.
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5.1 Returning for a moment to special relativity:
deducing Netwon’s first law

We will now show that the principle of maximum aging leads to Newton’s
first law when using Lorentz geometry.

Look at figure 3. We see the worldline of a particle going from position
x1 at time t1 to position x3 at time t3 passing through position x2 at time
t2. Say that the points x1, x2 and x3 are fixed and known positions. We
also say that the total time interval t13 it takes the object to go from x1

to x3 is fixed and known. What we do not know is the time interval t12
it takes the particle to go from point x1 to point x2. Remember that we
do not know that the object will move with constant velocity, this is what
we want to show. Thus we leave open the possibility that the particle will
have a different speed between x1 and x2 than between x2 and x3. The
time t2 can be at any possible point between t1 and t3. In figure 3 we
show some possible spacetime paths that the object could take. We now
assume that the distances x12 and x23 are very short, so short that the
object can be assumed to move with constant velocity between these two
points, i.e. that the object is in a local inertial frame between x1 and x2

and in a (possibly different) intertial frame between x2 and x3. Therefore,
the time intervals t12 and t23 to travel these two short paths also need to
be short.

The total wristwatch time τ it takes the particle to move from x1 to x3 is

τ13 = τ12 + τ23 =
√

t212 − x2
12 +

√
t223 − x2

23, (5)

where we used that ∆τ = ∆s =
√

∆t2 − ∆x2 for Lorentz geometry. Ac-
cording to the principle of maximal aging, we need to find the path, i.e.
the t12, which maximizes the total wristwatch time τ13. We do this by
setting the derivative of τ13 with respect to the free parameter t12 equal
to zero, i.e. you look for the maximum point of the function τ13(t12):

dτ13

dt12

=
t12√

t212 − x2
12

+
t23√

t223 − x2
23

dt23
dt12

.

Since t23 = t13 − t12 we have that dt23/dt12 = −1 (remember that t13 is a
fixed constant). Thus we have

t12√
t212 − x2

12

− t23√
t223 − x2

23

= 0

or written in terms of τ12 and τ23 we have

t12
τ12

=
t23
τ23

.

Check that you understood every step in the deduction so far! This is
only for three points x1, x2 and x3 along the worldline of a particle. If we
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Figure 3: The motion of a particle in free float in Lorentz geometry. Points
x1, x2, x3 as well as the times t1 and t3 are fixed. For a particle at free float,
at what time t2 will it pass x2? Which of the possible spacetime paths in
the figure does the particle take? We use the principle of maximal aging to
show that in Lorentz geometry, the particle follows the straight spacetime
path.

continue to break up the worldline in small local inertial frames at points
x4, x5, etc. we can do the same analysis between any three adjacent points
along the curve. The result is that

dt

dτ
= constant,

where I have written dt instead of t12 or t23 and dτ instead of τ12 or τ23.
Remember that we assumed these time interval to be very short. In this
final expression we have taken the limit in which these time intervals are
infinitesimally short. We also remember (do you?) from special relativity
that

dt

dτ
=

1√
1 − v2

= γ.

So the principle of maximal aging has given us that γ = constant along
a worldline. But γ only contains the velocity v of the object so it follows
that v = constant. In Lorentz geometry, a free-float object will follow the
spacetime path for which the velocity is constant. We can write this in a
different way. In special relativity we had that

E = γm

so we can write γ = E/m from which follows that

γ =
E

m
= constant.

We have just deduced that energy is conserved, or more precisely energy
per mass E/m is conserved. In the lectures on special relativity we learned
that experiments tell us that the relativistic energy E = γm is conserved
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and not Newtonian energy. Here we found that the principle of maximal
aging tells us that there is a quantity which is conserved along the motion
of a particle. This quantity is the same as the quantity we call relativistic
energy.

Is it possible that the principle of maximal aging can give us something
more? We will now repeat the above calculations, but now we fix t12, t23
and t13. All times are fixed. We also fix x1 and x3, but leave x2 free. The
situation is shown in figure 4. Now the question is ’which point x2 will
the object pass through?’. We need to take the derivative of expression
(5) with respect to the small interval x12 which is a free parameter.

dτ13

dx12

=
−x12√
t212 − x2

12

− x23√
t212 − x2

12

dx23

dx12

.

Again x23 = x13 − x12 so that dx23/dx12 = −1 and we have

x12

τ12

=
x23

τ23

,

we have found another constant of motion

dx

dτ
= constant

But we can write this as

dx

dτ
=

dx

dt

dt

dτ
= vγ.

We have that
vγ = constant =

p

m
.

(Go through this deduction in detail yourself and make sure you under-
stand every step). We remember that p = mγv, so the principle of maxi-
mal aging has given us the law of momentum conservation, or actually the
law of conservation of momentum per mass p/m. We have seen that the
principle of maximal aging seems to be more fundamental than the prin-
ciples of energy and momentum conservation. It is sufficient to assume
the principle of maximal aging. From that we can deduce the expres-
sions for energy and momentum and also that these need to be conserved
quantities.

5.2 Returning to general relativity: deducing and
generalizing Newton’s law of gravitation

Now, what about general relativity? We will see how the principle of
maximal aging tells a particle to move in Schwarzschild spacetime. Look
at figure 5. A particle travels from radius r1 at time t1 to radius r3 at
point t3 passing through point r2 at time t2. We fix r1, r2 and r3. We
also fix the start and end times t1 and t3. We leave t2 free. We will find
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Figure 4: The motion of a particle in free float in Lorentz geometry. Points
x1, x3 as well as the times t1, t2 and t3 are fixed. For a particle in free
float, which position x2 will it pass at time t2? Which of the possible
spacetime paths in the figure does the particle take? We use the principle
of maximal aging to show that in Lorentz geometry, the particle follows
the straight spacetime path.

Figure 5: The motion of a particle in free float in Schwarzschild geometry.
Points r1, r2, r3 as well as the times t1 and t3 are fixed. For a particle in
free float, at what time t2 will it pass through r2? We assume that the
distances r2 − r1 and r3 − r2 are so small that we can assume the radial
distance to be r = rA always in the former interval and r = rB always in
the latter interval.
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Figure 6: The motion of a particle in free float in Schwarzschild geometry.
Which spacetime path will the particle take between points A and B?

at which time t2 the particle passes through point r2. Again we write the
total proper time for the object from r1 to r3 as (using the Schwarzschild
line element, equation 1, for ∆τ)

τ13 = τ12 + τ23 =

√√√√(1 − 2M

rA

)
t212 −

r2
12(

1 − 2M
rA

)
+

√√√√(1 − 2M

rB

)
t223 −

r2
23(

1 − 2M
rB

) ,

where rA is the radius halfway between r1 and r2. We assume that r12 is so
small that we can use the radius rA for the full interval. In the same way,
rB is the radius halfway between r2 and r3 which we count as valid for the
full interval r23. Following the procedure above, we will now maximize the
total proper time τ13 with respect to the free parameter t12. We get

dτ13

dt12

=

(
1 − 2M

rA

)
t12

τ12

+

(
1 − 2M

rB

)
t23

τ23

dt23
dt12

.

As above, t23 = t13 − t12 giving dt23/dt12 = −1. Thus we have that(
1 − 2M

rA

)
t12

τ12

=

(
1 − 2M

rB

)
t23

τ23

.

We find that (
1 − 2M

r

)
dt

dτ
= constant, (6)

where again we have taken the limit where t12, t23, τ12 and τ13 are so small
that they can be expressed as infinitesimally small periods of time dt and
dτ . In the case with Lorentz geometry we used this constant of motion to
find that the velocity had to be constant along the worldline of a freely
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floating particle. Now we want to investigate how this constant of motion
tells us how a freely floating particle moves in Schwarzschild spacetime.
First we need to find an expression for dt/dτ . In special relativity we
related this to the velocity of the particle using dt/dτ = γ, but this was
deduced using the line element of Lorentz geometry. Here we want to
relate this to the local velocity that a shell observer at a given radius
observes. The locally measured shell velocity as an object passes by a
given shell is given by

vshell =
drshell

dtshell

We now use equation 3 (the equation connecting far-away-time and shell
time, remember?) to write the constant of motion (equation 6) as(

1 − 2M

r

) (
1 − 2M

r

)−1/2
dtshell

dτ
=

(
1 − 2M

r

)1/2
dtshell

dτ

=

(
1 − 2M

r

)1/2

γshell =

(
1 − 2M

r

)1/2
1√

1 − v2
shell

= constant.

In the last transition we used the fact that the shell observer lives in a
local inertial frame for a very short time. The shell observer makes the
velocity measurement so fast that the gravitational acceleration could not
be noticed and he could use special relativity assuming flat spacetime.
So using his local time tshell, the relation dtshell/dτ = γshell from special
relativity is valid. We have thus found a constant of motion:(

1 − 2M

r

)1/2
1√

1 − v2
shell

= constant.

Consider a particle moving from radius rA to a higher radius rB (see figure
6). This time, the distance between points A and B does not need to be
small. As the object moves past shell rA, the shell observers at this shell
measure the local velocity vA. As the object moves past shell rB, the
shell observers at this shell measure the local velocity vB. Equating this
constant of motion at the two positions A and B we find(

1 − 2M

rA

)1/2
1√

1 − v2
A

=

(
1 − 2M

rB

)1/2
1√

1 − v2
B

.

Squaring and reorganizing we find

(1 − v2
B)

(
1 − 2M

rA

)
= (1 − v2

A)

(
1 − 2M

rB

)
.

We already see from this equation that if rB > rA then vB < vA (check!).
Thus if the object is moving away from the central mass, the velocity is
decreasing. If we have rB < rA we see that the opposite is true: If the
object is moving towards the central mass, the velocity is increasing. So
the principle of maximum aging applied in Schwarzschild geometry gives
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a very different result than in Lorentz geometry. In Lorentz geometry
we found that the velocity of a freely floating particle is constant. In
Schwarzschild spacetime we find that the freely floating particle accelerates
towards the central mass: If it moved outward it slows down, if it moved
inwards it accelerates. This is just what we normally consider the ’force of
gravity’. We see that here we have not included any forces at all: We have
just said that the central mass curves spacetime giving it Schwarzschild
geometry. By applying the principle of maximal aging, that an object
moving through spacetime takes the path with longest possible wristwatch
time τ , we found that the object needs to take a path in spacetime such
that it accelerates towards the central mass. We see how geometry of
spacetime gives rise to the ’force of gravity’. But in general relativity we
do not need to introduce a force, we just need one simple principle: The
principle of maximal aging.

We will now check if the acceleration we obtain in the limit of large radius
r and low velocities vshell is equal to the Newtonian expression. We now
call the constant of motion K giving(

1 − 2M

r

)
1

1 − v2
shell

= K.

Reorganizing this we have

vshell =

√
1 − 1

K

(
1 − 2M

r

)
(7)

We want to find the acceleration

gshell =
dvshell

dtshell

that a shell observer measures. Taking the derivative of equation 7 we get
(check!)

dvshell

dtshell

=
1

2vshell

2M

K

(
− 1

r2

)
dr

dtshell

.

Using equation 4 and that vshell = drshell/dtshell we obtain

gshell ∝

√(
1 − 2M

r

)
M

r2

Newton’s law of gravitation is not valid close to the Schwarzschild horizon,
so to take the Newtonian limit we need to consider this expressions for
r >> 2M . In this limit the expression reduces to

gshell ∝
M

r2
,

exactly the Newtonian expression for the gravitational acceleration. We
find that far away from the Schwarzschild radius, general relativity reduces
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to Newton’s law of gravitation. We can now return to figure 6 and look at
the path marked Schwarzschild path. This is the spacetime path between
A and B that a freely floating object needs to take in order to get the
longest proper time τ . Looking at the slope of this path, we see that
the object changes velocity during its trip from A to B. This is in sharp
contrast to the results from special relativity with Lorenzt geometry where
the path which gives longest possible proper time is the straight line with
constant velocity.

We will now return to our constant of motion(
1 − 2M

r

)1/2
1√

1 − v2
shell

= constant (8)

In special relativity we found that a constant of motion which we obtain
in the same manner was just the energy per mass. We will now go to the
Newtonian limit to see if the same is the case for Schwarzschild spacetime.
We will use two Taylor expansions,

√
1 − x ≈ 1 − 1

2
x + ...

1√
1 − x2

≈ 1 +
1

2
x2,

both taken in the limit of x << 1. In the Newtonian limit we have that
2M/r << 1 and v << 1. Applying this to equation (8) we have(

1 − M

r

)(
1 +

1

2
v2

)
≈ 1 +

1

2
v2 − M

r
= constant

In the last expression we used that since both 2M/r and v are very small,
the product of these small quantities is even smaller than the remaining
terms and could therefore be omitted. Compare this to the Newtonian
expression for the energy of a particle in a gravitational field

E =
1

2
mv2 − Mm

r
.

We see again that the constant of motion was just energy per mass E/m
where the expression now tells us how the gravitational potential looks
like (have you noticed this: you have actually derived why the form of the
Newtonian gravitational potential is the way it is). Note the additional
term in the relativistic expression which is just the rest energy m. Again
the principle of maximal aging has given us that energy is conserved and
it has given us the relativistic expression for energy in a gravitational field.

Relativistic energy in a gravitational field

E

m
=

(
1 − 2M

r

)
dt

dτ
= constant.
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We also found that this expression for the energy equals the Newtonian
expression for distances far from the Schwarzschild radius.

In the exercises you will use the principle of maximum aging to find that
angular momentum per mass is conserved in Schwarzschild spacetime and
that the expression for angular momentum per mass in Schwarzschild
spacetime is

Angular momentum per mass in Schwarzschild spacetime

L

m
= r2dφ

dτ
= γshellrvφ = constant.

6 Freely falling

Armed with the expression for the conserved energy and angular momen-
tum we will now start to look at motion around the black hole. First, we
will leave an object at rest at a large distance from the central mass. We
leave the object with velocity zero v = 0 at a distance so large that we
can let r → ∞. The energy per mass of the particle is then only the rest
energy of the particle, E = m.

E

m
=

(
1 − 2M

r

)
dt

dτ
= 1

From this we have

dτ =

(
1 − 2M

r

)
dt.

Remember from the previous deduction that the proper time τ here refers
to time measured on the wristwatch attached to the falling object. In-
serting this into the Schwarzschild line element (equation 1) we obtain
(remember ds = dτ always!)

dτ 2 =

(
1 − 2M

r

)2

dt2 =

(
1 − 2M

r

)
dt2 − dr2(

1 − 2M
r

)
The object starts falling radially inwards towards the central mass. We
want to find the velocity of the falling object at a given radius r. Reorga-
nizing the previous equation we have (check!)(

dr

dt

)2

=

(
1 − 2M

r

)2
2M

r
.

To obtain the velocity v = dr/dt, we need to take the square root on both
sides. This leaves a positive and a negative solution. Since this object is
falling in the negative r direction, we choose the negative solution

v = −
(

1 − 2M

r

)√
2M

r
. (9)
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Figure 7: Info-figure: An example of a two-dimensional analogy of the
warping of space and time by massive objects, often used in introductory
texts on general relativity. General relativity was proposed by Einstein in
1916 and provides a unified description of gravity as a geometric property
of space and time, or spacetime. The curvature of spacetime is directly
related to the energy and momentum of whatever matter and radiation
are present. Some predictions of general relativity differ significantly from
those of classical physics, especially concerning the passage of time, the
geometry of space, the motion of bodies in free fall, and the propagation
of light. Examples of such differences include gravitational time dilation,
gravitational lensing, the gravitational redshift of light, and the gravita-
tional time delay. (Figure: WGBH Boston)
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At large distance r → ∞ the velocity goes to zero as expected. What
happens when the object approaches the black hole? For large distances
the factor

√
2M/r is dominating. This factor increases with decreasing

r, so the velocity increases just as expected. When we approach the
Schwarzschild radius, the first factor

(
1 − 2M

r

)
starts dominating as the

last factor now goes to one. In this case, the velocity is decreasing when
r is decreasing. At the horizon the velocity reaches exactly zero. What
we see is plotted in figure 8. When the object starts falling the velocity
increases until a point where it starts decreasing. At the horizon the object
stops. This result was obtained using Schwarzschild coordinates. Thus,
this is the result that the far-away observer sees. This means that if we
let a spaceship fall into a black hole, we, as far-away observers, would see
the spaceship stopping at the horizon and it would stay there for ever.
Remember also that time is going slower closer to the horizon,

∆tshell =

√(
1 − 2M

r

)
∆t

At the horizon r → 2M , we observe that time stops. Thus, looking at the
spaceship we would observe the persons in the spaceship to freeze at the
horizon. Everything stops. In the exercises you will show that light from
a central mass is red shifted. Thus we will also see a strongly redshifted
light from the spaceship. Using the expression from the exercises you will
see that light arriving from the horizon is infinitely red shifted. Thus you
will not see any light from the horizon. You will only see the spaceship
just before it reaches the horizon and then only as radio waves with a
large wavelength (see problem 1).

What do the shell observers living at shells close to the horizon see? Using
formulas (3) and (4) we can find the local velocity vshell = drshell/dtshell

as observed by the shell observers when the spaceship passes by the shell.
We get

vshell =
drshell

dtshell

=

(
1 − 2M

r

)−1/2
dr(

1 − 2M
r

)1/2
dt

=
v(

1 − 2M
r

) = −
√

2M

r
,

where the expression (9) for the far-away velocity v was used. Shell ob-
servers closer and closer to the horizon will always observe a larger and
larger local velocity. The shell observers on the shell just above the horizon
r = 2M sees that vshell → −1, that the velocity of the object approaches
the speed of light as the spaceship approaches the horizon. We have seen
a huge difference in results: The far-away observer sees that the object
falls to rest at the horizon, the local observer close to the horizon sees the
object approaching the speed of light. Already from special relativity we
are used to the fact that observers in different frames measure different
numbers, but this is a really extreme example. What do the freely falling
observers in the spaceship see? For the freely falling observers nothing
particular at all happens when they pass the horizon. The freely falling
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Figure 8: Schematic plot of the variation of velocity as a function of radial
distance from the center for an object falling in from a huge distance.

observers are always moving from one local inertial frame to the other,
but nothing special happens at r = 2M .

What velocity do local observers measure beyond the horizon? Do they
measure a velocity larger than the velocity of light? In a coming lecture
we will look a little bit more at motion beyond the horizon, but here we
will look briefly at the Schwarzschild line element to see if we get some
hints.

∆τ 2 =

(
1 − 2M

r

)
∆t2 − ∆r2(

1 − 2M
r

)
Exactly at the horizon, the line element is singular. This is not a physical
singularity, but what we call a coordinate singularity. By changing coor-
dinate system, this singularity will go away and one can calculate ∆s at
the horizon without problems. One may understand this easier by looking
at the analogy with the sphere: If a function on the sphere contains the
expression 1/θ (where θ is the polar angel being zero at the north pole)
it will become singular on the north pole. By changing the coordinate
system by defining the north pole at some other point on the sphere, the
point of the previuos north pole will not be singular. In this case the
function in itself is not singular on the point of the previous north pole,
it is the coordinate system which makes the expression singular at this
point.

We will now take a look at this line element when r < 2M . In this case
we can write it as

∆τ 2 =
∆r2∣∣1 − 2M

r

∣∣ −
∣∣∣∣1 − 2M

r

∣∣∣∣∆t2
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Looking at the sign, the space and time coordinates interchange their roles.
This does not directly mean that space and time interchange their roles,
but space does attain one feature which we normally associate with time:
An inevitable forward motion. In the same way as we always move forward
in time, an observer inside the horizon will always move forwards towards
the center. No matter how strong engines you have, you cannot stop this
motion: you cannot be at rest inside the horizon, always moving forwards
towards destruction at the center exactly as we always move forward in
time. A consequence of this is that no shell observers can exist inside the
horizon. You cannot construct a shell at rest, everything will always be
moving. Inside the horizon we cannot measure a local shell velocity, so
even if the shell velocity approaches the speed of light at the horizon it
does not necessarily mean that we will have a local velocity larger than
speed of light inside the horizon. More about this later.

7 An example: GPS, Global Positioning Sys-

tem

We have seen that general relativity becomes important for large masses
and for distances close to the Schwarzschild radius r → 2M . The ques-
tion now is when we need to take into account general relativistic effects.
Clearly this depends on the accuracy required for a given calculation. We
will now see one example where general relativity is important in everyday
life. The Global Positioning System (GPS) is used by a large number of
people, from hikers in the mountain trying to find their position on the
map to airplanes navigating with GPS in order to land even in dense fog.
GPS is based on 24 satellites orbiting the Earth with a period of 12 hours
at an altitude of about 20 000 kilometers. Each satellite sends a stream of
signals, each signal containing information about their position ~xsat of the
satellite at the time tsat when the signal was sent. Your GPS receiver re-
ceives signals from three satellites (actually from four in order to increase
the precision of the internal clock in your GPS receiver, but if your GPS
receiver has an extremely accurate clock, only three satellites are strictly
necessary: We will for simplicity use three satellites and assume that your
GPS receiver contains an atomic clock in this illustration). The situation
is illustrated in figure 9. Your GPS receiver contains a very accurate clock
showing the time t when you receive the signal. This gives your GPS
receiver three equations with the three coordinates of your position ~x as
the three unknowns,

|~x − ~xsat1| = c(t − tsat1) ≡ c∆t1,

|~x − ~xsat2| = c(t − tsat2) ≡ c∆t2,

|~x − ~xsat3| = c(t − tsat3) ≡ c∆t3.

The GPS receiver receives the time tsat when a signal was emitted from the
satellite. Knowing that the signal travels with light speed c and reading off
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Figure 9: The GPS system.

the time of reception of the signal on the internal clock of the GPS receiver,
the receiver can calculate the distance c∆t that the signal has traveled.
This distance is equal to the difference between your position ~x and the
position ~xsat of the satellite when the signal was emitted. Solving the three
equations above, the GPS receiver solves for your position ~x = (x, y, z)
normally expressed in terms of longitude, latitude and altitude. (Note
that if a fourth equation were added using a signal from a fourth satellite,
another unknown could be allowed: This is how the precision of your GPS
clock is increased: your time t is solved from the four set of equations.
Here we will assume that your GPS receiver has an atomic clock)

If we assume a simplified one dimensional case, i.e. that you only have a
one dimensional position x, the solution would be

x = c∆t ± xsat.

We see that the precision of your calculated position x depends on the
precision with which we can calculate the time difference ∆t = t−tsat. The
signals move with velocity of 300 000 kilometers per second. If there is an
inaccuracy of the order 1 µs = 10−6 s, one microsecond, the inaccuracy in
the calculated position would be of the order 3×108 m/s×10−6 s = 300 m.
An inaccuracy of one microsecond corresponds to an inaccuracy of 300
meters in the position calculated by GPS. In such a case GPS would be
useless for many of its applications and more seriously, the airplane missing
the tarmac with 300 meters would crash!

We know that due to special relativity, the clocks in the satellite and the
clocks on Earth (in your GPS receiver) run at different paces because of
the relative motions of the satellites with respect to you. We also know
from general relativity that the clocks in the satellite run at a different
pace than your clock because of difference in distance from the center of
attraction (center of Earth). If the clocks in the satellites and the clocks
in the GPS receivers were synchronized at the moment when the satellites
were launched into orbit, the question is how long does it take until the
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relativistic effects make the Earth and satellite clocks showing so different
times that GPS has become useless. Relativistic effects are usually small
so one could expect that it would take maybe thousands of years. If this
were the case, we wouldn’t need to worry. But remember that we require
a precision better than 1 µs here. This could make relativistic effects
important. Let’s check.

We start by the gravitational effect. We consider two shells, shell 1 is
the surface of the Earth situated at radial distance r1 = 6000 km (ap-
proximately, we are only looking for orders of magnitude here, not ex-
act numbers). Shell 2 is the orbit of the satellites at radial distance
r2 = 6000 + 20000 km. A time interval ∆t1 on the surface of the Earth is
related to a time interval ∆t of the far-away observer by (see equation 3)

∆t1 =

√(
1 − 2M

r1

)
∆t.

Similarly, a time interval ∆t2 measured on the satellite clock is related to
the far-away time ∆t by

∆t2 =

√(
1 − 2M

r2

)
∆t.

Dividing these two equations on each other we find that

∆t1 =

√√√√1 − 2M
r1

1 − 2M
r2

∆t2.

This is the difference in clock pace between the satellite and Earth clocks
taking into account only gravitational effects. We will first check the order
of magnitude of these terms. What is the mass of the Earth measured in
meters? We have

MEarth = 6 × 1024 kg = 6 × 1024 × (7.42 × 10−28 m) = 0.0044 m.

(in case you have forgotten: go back and check how to go from kg to
meters). So the term 2M/r is of the order 10−8 for Earth, very much
smaller than 1. Thus we can use Taylor expansions,

√
1 − x ≈ 1 − 1

2
x + ...

1/
√

1 − x ≈ 1 +
1

2
x + ...

giving for x = 2M/r

∆t1 = ∆t2 +

(
M

r2

− M

r1

)
∆t2,

where we have skipped terms of second order in small quantities (two x
multiplied with each other) as these are much smaller than the terms of
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first order in x. We see that ∆t1 < ∆t2 as expected: Observers far away
from the central mass see that clocks close to the central mass run slower.
Observers far away from Earth will observe that it takes longer than one
second on their wristwatch (∆t2) for the clocks on Earth (∆t1) to move
one second forward.

Inserting numbers for r1 and r2 we obtain

∆t1 ≈ ∆t2 − 7 × 10−10∆t2.

We see that after about one day ∆t2 = 3600×24 s, the satellite clocks are
60 microseconds ahead of the Earth clocks. This corresponds to uncer-
tainties in position measurements of the order 20 kilometers. Thus, one
day after launching the satellites, GPS would be useless unless relativistic
effects are taken into account!

In order to be sure about this, we need to also look at special relativistic
effects. Seen from Earth, satellite clocks (which send time signals read
from their own clocks to Earth) go slower (since they are moving with
respect to the observers on the surface of the Earth). We have

∆tSR
1 = γ∆tSR

2 ,

where SR stands for special relativity. In this case ∆tSR
1 > ∆tSR

2 opposite
of the general relativistic effect. We need to check whether this effect
might be just large enough to cancel the general relativistic effect. From
Kepler’s 3rd law for the satellite we have (check that you can actually
derive this), (

2πr2

vφ2

)2

=
4π2r3

2

GMEarth,kg

(using conventional units) we find that the orbital speed of the satellite is
vφ2 = 1.3 × 10−5 (dimensionless velocity). In addition an observer at the
surface of the Earth moves with velocity (due to Earth’s rotation)

v =
2πr1

24 h
= 0.5 km/s

or vφ1 = 1.5 × 10−6 in dimensionless units. The velocity of the satellite
relative to the observer on the ground is thus approximately vφ = vφ1 +
vφ2 ≈ 1.5×10−5 giving γ ≈ 1+10−10. In one day we find that the satellite
clocks run about 10 microseconds slow (actually aboout 9, check that you
agree), by far not enough to cancel the general relativistic effect. Both
effects need to be taken into account in order to make GPS of any use at
all, and in order to not make your airplane crash when landing in fog.

We have so far used approximate general and special relativistic expres-
sions separately. Using the Schwarzschild line element we may take both
effects into account simultaneously and obtain a more accurate expression.
Writing first the line element (between two clock ticks) for the observer
on the surface of the Earth, we have

∆τ 2 = ∆t21 =

(
1 − 2M

r1

)
∆t2 − r2

1∆φ2
1,
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where ∆r1 = 0 since the observer stays at the same radial distance. We
can express this as (

∆t1
∆t

)2

=

(
1 − 2M

r1

)
− v2

φ1,

where vφ1 is the tangential velocity of the Earth observer, vφ = rdφ/dt
(did you get this transition?). Using the same arguments, we get the same
expression for the satellite(

∆t2
∆t

)2

=

(
1 − 2M

r2

)
− v2

φ2,

where vφ2 is the tangential velocity of the satellite. Dividing these two
expressions on each other, we have

(
∆t1
∆t2

)
=

√√√√1 − 2M
r1

− v2
φ1

1 − 2M
r2

− v2
φ2

.

For low velocities and small 2M/r this expression reduces to the approx-
imate expressions above. Note that we have not been very careful when
measuring the tangential velocities: We did not specify tangential velocity
with respect to which time, Earth time, Satellite time or far-away time.
In turns out that taking into account these differences gives corrections
to the correction which are so small that they can be ignored. We also
did not specify whether the radial distances we used for Earth and the
satellite were in Schwarzschild coordinates r or in shell distances rshell.
Also these differences are so small that they can be ignored in this case.

8 Exercise to be presented on the black-

board: Deriving the Scwarzschild line el-

ement.

The setting up Einstein’s field equations for general relativity and solving
them go beyond the scope of AST1100, but we can still make an argument
for why the Schwarzschild line element is plausible as a description of
the spacetime outside a spherical mass distribution. In the following you
can assume that all gravitational fields are weak, and that all speeds are
negligible compared to the speed of light in vacuum, c. A point mass m
is dropped infinitely far from M with zero speed initially. (See figure 10).

a) Show that the velocity of the point mass in position ~r is given by

~v = −
√

2GM

r
~er, (10)

where ~er is the unit vector in the direction of ~r.
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Figure 10: A sketch of the situation in this problem.

b) Consider a free-float system attached to the point mass with coordi-
nates (tFF, xFF, yFF, zFF) = (tFF, ~xFF). Explain briefly why the line
element in this system is

ds2
FF = −c2dt2 + d~x2

FF.

c) Consider a rigid coordinate system fixed to the stars infinitely far
from the mass distribution, (tr, xr, yr, zr). Explain why the transfor-
mation between this system and the free-float system in the previous
point is given by

dtFF = dtr

d~xFF = d~xr = ~vdtr,

where ~v is given by equation (10).

d) Show that the line element in the rigid reference frame is given by

ds2
r = −

(
c2 − 2GM

r

)
dt2r + 2

√
2GM

r
drrdtr + d~x2

r .

It can be shown that this line element is an exact solution of Einstein’s
field equations in the empty space outside the spherical mass distribu-
tion, expressed in the so-called Painlevé-Gullstrand coordinates. Adopting
spherical spatical coordinates and dropping subscripts we have

ds2 = −
(

c2 − 2GM

r

)
dt2 + 2

√
2GM

r
drdt + dr2 + r2(dθ2 + sin2 θdφ2).

We can write this line element in a more familiar form by transforming to
a new time coordinate, tS:

tS = t −

[
2r

c

√
2GM

rc2
− 4GM

c3
tanh−1

(√
2GM

rc2

)]
= tS(t, r).

e) Carry out the transformation of the line element. Do you recognize
the result? (Hint: Use the fact that dtS = ∂tS

∂t
dt + ∂tS

∂r
dr.)
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9 Problems

Problem 1 (2–3 hours)

Imagine a shell observer at shell r is pointing a laser pen radially outwards
from the central mass. The beam has wavelength λ. Here we will try to
find the wavelength λ′ observed by the far-away observer.

1. The frequency of the light emitted by the laser pen is ν = 1/∆t.
The frequency of the light received by the far-away observer is ν ′ =
1/∆t′. Here ∆t and ∆t′ is the time interval between two peaks of
electromagnetic waves. Show that the difference in time interval
measured by the two observers is given by

∆t′ =
∆t√(

1 − 2M
r

) .
Hint: Imagine that a clock situated at shell r ticks each time a peak
of the electromagnetic wave passes.

2. Use this fact to show that the gravitational ’Doppler’ formula, i.e.
the formula which gives you the wavelength observed by the far-away
observer for light emitted close to the central mass, is given by

∆λ

λ
=

λ′ − λ

λ
=

1√(
1 − 2M

r

) − 1

3. Show that for distances r >> 2M this can be written as

∆λ

λ
=

M

r

Hint: Taylor expansion.

4. We will now study what wavelength of light that an observer far
away from the Sun will observe for the light with the wavelength
λmax = 500 nm emitted from the solar surface.

(a) Find the mass of the Sun in meters.

(b) Find the ratio M/r for the surface of the Sun.

(c) Find the redshift ∆λ/λ measured by a far-away observer.

(d) Is the apparent color of the Sun changed due to the gravita-
tional redshift?

(e) For light coming from far away and entering the gravitational
field of the Earth, an opposite effect is taking place. The light
is blue shifted. Find the ratio M/r for the surface of the Earth.

(f) Find the gravitational blue shift ∆λ/λ for light arriving at
Earth. Does this change the apparent color of the Sun?
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5. A quasar is one of the most powerful sources of energy in the uni-
verse. The quasars are thought to be powered by a so-called accre-
tion disc: Hot gas circling and falling into a black hole. The gas
reaches velocities close to the speed of light as it approaches the
horizon, but since we only see the sum of the radiation coming from
all sides of the black hole, we expect the Doppler effect due to the ve-
locity of the gas to cancel out. Assume that we find evidence for an
emission line at λ = 2150 nm in the radiation from a quasar. Assume
also that we recognize this emission line to be a line which in the lab-
oratory is measured to occur at λ = 600 nm. Give some arguments
explaining why this observation supports the hypothesis of quasars
having a black hole in the center and find from which distance r
(expressed in terms of the black hole mass M) from the center, the
radiation is emerging. Assume that the Doppler effect due to the
quasar’s movement with respect to us has been subtracted.

6. Imagine you are a shell observer living at a shell at r = 2.01M very
close to the horizon of a black hole of mass M . Can you use optical
telescopes to observe the stars around you? What kind of telescope
do you need?

Problem 2 (30 min.–1 hour)

In this exercise we will use the principle of maximal aging to deduce the
law of conservation of angular momentum in general relativity. In the
text you have seen three examples of this kind of derivation and here we
will follow exactly the same procedure. Before embarking on this exercise,
please read the examples in the text carefully.

1. Use figure 11 in this exercise: We will study the motion of an object
which passes through three points φ1, φ2 and φ3 at times t1, t2 and
t3. We fix t1, t2 and t3 as well as φ1 and φ3. The free parameter here
is φ12, the angle between φ1 and φ2. We assume that between φ1

and φ2 the radius is r = rA (we assume the distance between these
two points to be so small that r is constant) and between φ2 and
φ3 we have r = rB (see again figure 11). Use the Schwarzschild line
element to show that the proper time interval from φ1 to φ3 can be
written as

∆τ13 = τ12 + τ23 =

√(
1 − 2M

rA

)
t212 − r2

Aφ2
12

+

√(
1 − 2M

rB

)
t213 − r2

Bφ2
13

2. Use the principle of maximal aging to show that

r2
Aφ12

τ12

=
r2
Bφ23

τ23
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Figure 11: A sketch of problem 2.

3. Show that

L = r2dφ

dτ

is a conserved quantity.

Problem 3 (1–2 hours)

Assume that the crew on an airplane works on average 8 hours per day 365
days a year for 50 years. Assume that all this time, they are at a height
of ∆r = 10 km above the ground (assume the radius of the Earth to be
r = 6000 km) moving at a velocity of vAirplane = 1000 km/h with respect
to the center of the Earth. We will here ignore the effect of acceleration
during take-off and landing.

1. Show that proper time intervals ∆τ for the crew at work can be
written in terms of time intervals ∆tEarth measured on Earth clocks
as

∆τ

∆tEarth

=

√
1 − 2M

r+∆r
− v2

Airplane

1 − 2M
r

− v2
Earth

,

where vEarth is the velocity of a person on the Earth with respect to
the center of the Earth.

2. This expression may give numerical problems when using very small
numbers. For this reason we will try a Taylor expansion. Calculate
M/r as well as the velocity vAirplane and vEarth (use Earth’s rotation
period) in dimensionless units. Are these so small that we can Taylor
expand the expression above in terms of 2M/r, vAirplane and vEarth?

3. Show that the Taylor expansion of this expression, assuming that
these three quantities are small, can be written as

∆τ

∆tEarth

≈ 1 +
1

2
(v2

Earth − v2
Airplane) + M

(
1

r
− 1

r + ∆r

)
.

Hint: Taylor expand first in

x = −(
2M

r + ∆r
+ v2

Airplane),
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then in

y = −(
2M

r
+ v2

Earth).

4. Use this expression to find how much shorter a crew member lives
with respect to persons staying on Earth, taking into account only
relativistic effects?

5. Would you now skip next year’s vacation in the fear of getting old
too fast?

Problem 4 (1–2 hours)

Study carefully the chapter on GPS.

1. Use the information in that chapter to find how long after the launch
of the satellites the GPS system will be useless. Define useless to be
when the uncertainty in the position measurements is of the order 1
kilometer.

2. Imagine that in the future when Mars has been terraformed (i.e. one
has managed to grow plants there which produce oxygen and thus an
atmosphere which we can breath) and a large part of the population
of Earth has moved to Mars. It is finally decided to set up a GPS
system on Mars in order to make it easier for the mountaineers
boldly climbing the Olympus Mons (the highest mountain on Mars,
27 000 meters high) to find their position on the map. However,
even with future high-tech, human errors are unavoidable and the
people setting up the GPS forgot about relativistic corrections. In
this exercise you will need to look up the mass, radius and orbital
period of Mars. You also need to know that the GPS satellites have
orbital periods of 12 hours (assume circular orbits).

(a) At what height above the surface are the satellites orbiting?

(b) How long after the launch of the satellites will the poor moun-
taineers get lost on Olympus Mons? (They are lost when they
think they are 1 kilometer away from where they really are).
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AST1100 Lecture Notes

17: General Relativity: Orbits

1 Schwarzschild step-by-step motion

In this lecture we will look at corrections to orbital motion due to general
relativity. We have already learned that a body in the gravitational field
of another body may go in elliptical orbits or escape to infinity following
parabolic or hyperbolic trajectories depending on the total energy of the
body. We have now obtained more accurate expressions for motion in
gravitational fields and will check if these corrections may give rise to
orbital behavior different from the Newtonian prediction. We will study
the motion of a body in the gravitational field of a black hole. We might
already anticipate a few differences to Newtonian gravity: If the body
comes too close to the black hole (inside the Schwarzschild radius), it will
be swallowed by the black hole without possibilities to get out. We will
now check this in more detail.

In figure 1 we show a spaceship at position (r, φ, t) in Schwarzschild coor-
dinates around a black hole of mass M . The spaceship has used all its fuel
and can therefore not use its engine, it is falling freely. The astronauts
in the spaceship are wondering whether the spaceship will pass the black
hole so close to the center that they will be swallowed by the black hole
or not. We will now study the motion of the spaceship step by step. We
will ask the question, what is the new position (r, φ, t) in Schwarzschild
coordinates of the spaceship after a time interval ∆τ has passed on the
wrist watches of the astronauts? We will look for the small increments
∆r, ∆φ and ∆t for each small increment in astronaut proper time ∆τ .
By increasing ∆τ and thereby the other coordinates step by step, we will
be able to follow the motion (r, φ) of the spaceship and check if it at some
point will reach r = 2M or not.

Knowing that the total energy per mass E/m is a constant of motion, we
can rewrite the expression

E

m
=

(
1 − 2M

r

)
dt

dτ
,

for total energy per mass as
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Figure 1: The spaceship is out of fuel. The engines stop. What will be
the next movement in r and φ direction?

∆t =
E/m(

1 − 2M
r

)∆τ. (1)

Similarly we can use that the angular momentum per mass L/m is a
constant of motion

L

m
= r2dφ

dτ
to get

∆φ =
L/m

r2
∆τ. (2)

We have already obtained the displacements ∆φ and ∆t per proper time
interval ∆τ . Now we need to find the radial displacement ∆r. The
Schwarzschild line element (see previous lecture) gives

∆s2 = ∆τ 2 =

(
1 − 2M

r

)
∆t2 − ∆r2(

1 − 2M
r

) − r2∆φ2.

We insert the expressions (1) and (2) into the line element and obtain

∆τ 2 =

(
1 − 2M

r

)(
E/m(

1 − 2M
r

))2

∆τ 2 − ∆r2(
1 − 2M

r

) − r2

(
L/m

r2

)2

∆τ 2.

Reorganizing we find

∆r = ±

√√√√(E

m

)2

−

[
1 +

(
L/m

r

)2
](

1 − 2M

r

)
∆τ. (3)

We now have three equations (1), (2) and (3) giving us the motion of the
spaceship as observed by the far-away observer for each tick ∆τ on the
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wristwatch of the astronauts. Note that these expressions in reality give
the first order terms of a Taylor expansion in ∆τ . The second derivative
terms are not included (and will not be treated in this course) and we can
therefore not use them in this form to describe a full orbital motion. In
orbital motion, when the radial velocity reaches zero, the spaceship will
start moving outwards again (do you see that this is the case? Think
about the motion of a planet). Radial velocity equal to zero means that
the first derivative is zero and that the second derivatives (second order
in the Taylor expansion) is needed in order to describe the next step. But
we may use it up to the point where the radial velocity is zero. If the
radius at this point is outside r = 2M we are saved. If the radial velocity
does not reach zero before r = 2M the spaceship will fall into the black
hole. In order to describe the full motion in a more complete manner we
can either continue the Taylor expansion to higher orders or, much easier,
we can consider the effective potential.

2 Effective potential

To explain the concept of effective potential, we will go to a well known
example: An object sliding down a hill without friction. In figure (2)
we see the situation. An object is located at horizontal position x and
at height h. We can write the total (Newtonian) energy, kinetic plus
potential, with the well known expression

E/m =
1

2
v2 + gh(x) =

1

2
v2 + V (x),

where g is the constant gravitational acceleration, h(x) is the height of
the hill at position x, V (x) is the potential, v is the velocity of the object
and m its mass. In figure 3 I have made the same plot as figure 2, but
the function is now multiplied by g such that the y-axis now shows gh(x)
instead of only h(x). Thus, as you see from the previous expression, the
units on the y-axis is now energy per mass and the height of the hill is
just the potential V (x). When the velocity is zero v = 0, the height of the
object in this plot directly gives us the total E/m = gh(x) for the object
(you can see this from the previous equation: if v = 0 then E/m = V (x)).
Thus we can draw a horizontal line passing through this point, showing
that this is the energy per mass of the object for all positions x (remember
that E/m is constant). The object will have velocity zero at all points
where the horizontal line intersects the hill curve (why?).

We have defined the height h(x) to go to asymptotically to zero for large
distances x → ∞. Thus, at large distances the energy of the object
consists of purely kinetic energy as the potential energy gh(x) → 0. A
total negative energy of the object corresponds to an object left at rest
at h(x) < 0. This object can never reach infinity: We just learned that
at infinity the energy of the object is purely kinetic, but kinetic energy
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Figure 2: Object sliding down a frictionless hill with height h(x).

Figure 3: Object sliding down a frictionless hill with energy per mass
E/m = gh(x) deciding the future motion.
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cannot be negative. So an object with a negative total energy is trapped
in the ’valley’ seen in the figures. Note also that an object with negative
energy cannot move all the way in to x = 0, it can only reach up to the
point E/m on the y-axis where the velocity will be zero: It will start
oscillating back and forth between the two points where the horizontal
line at E/m crosses the hill curve. The situation is different for an object
with positive energy: Leave the object far out on the positive x axis with
an initial velocity different from zero and so large that E/m is positive.
By drawing a horizontal line at E/m you can find how far in the object
will move before it has v = 0 from where it will move back an out to
infinity. This object is not bound in the valley. The two situations are
illustrated in figure 4 and 5.

This case was probably not new to you. We will now generalize this
situation. We see (from equation 3) that the equation of motion for this
object can be written as

A = B~̇x2 + V (x), (4)

where A (equal to E/m in our example) and B (equal to 1/2 in our
example) are constants (B being positive), ~x is the position vector of the
object and V (x) is the position dependent potential. If V (x) has a ’valley’
similar to figure 3 and V (x) → 0 when x → ∞, then the object with
position ~x will move in the following way:

• With A < 0 (corresponding to E < 0 in our example) the object is
trapped and will oscillate back and forth between two positions.

• With A > 0 (corresponding to E > 0 in our example), the object
can escape out to any position.

We recognize the situation described here from a similar physical system:
The two body problem. We remember for the two-body problem that an
object with negative total energy was bound to orbital motion around the
other object whereas objects with positive total energy could escape to
infinity. Let’s try to see the mathematical analogy. The total energy of
an object with mass m close to a star of mass M is

E/m =
1

2
v2 − G

M

r
,

and angular momentum
L/m = r2φ̇ (5)

using for the moment conventional units. We are only interested in the ra-
dial motion of the object, i.e. whether the object will be bound or whether
it can escape to infinity. We are not interested in the details of the motion
in φ direction. We can rewrite the equation for the energy as

E/m =
1

2
(ṙ2 + r2φ̇2) − G

M

r
=

1

2
ṙ2 +

(
1

2

(L/m)2

r2
− G

M

r

)
, (6)

where equation 5 was used. Setting A = E/m, B = 1/2 and
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Figure 4: Bound object oscillating between two points on the hill.

Figure 5: Free object: slides up to a maximum point and then escapes to
infinity.
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Veff(r)/m =
1

2

(L/m)2

r2
− G

M

r
,

we see that equation 6 can be written on the form of equation 4. We
will call the potential V (r) for the effective potential. Thus the problem
is mathematically identical to the problem of the object sliding down
the hill. This means that also the results are identical. The r coordinate
corresponds to position on the hill, and the effective potential corresponds
to the shape of the hill. In figure 6 we can see the shape of the ’hill’ or
effective potential. The object falling in the gravitational field of a star is
identical to the object sliding down the hill using the effective potential
as the shape of the hill. Again we have the result that for A = E/m < 0,
the object is bound and will oscillate between two r positions which we
know (from earlier lectures) are r = a(1 − e) and r = a(1 + e). Here we
have ignored the motion in φ direction, but we already know that this
corresponds to an elliptical orbit. For E/m = 0, the object will reach zero
velocity at in infinite distance r → ∞. We already learned in previous
lectures that this corresponds to the parabolic trajectory. Finally for
E/m > 0, the object can move to infinite distances with arbitrary velocity
corresponding to the hyperbolic trajectory. Even though the treatment
with effective potential did not give us the exact shape of the orbit it
did tell us the essentials using the radial motion only: The object can
either oscillate between two radial positions or it can move out to infinity
depending on the total energy E/m.

3 Orbital motion in Schwarzschild geome-

try

We will now turn to the relativistic case. We have seen that by looking
just at the radial motion of an object in a gravitational field we can obtain
essential information about the future motion of this object without going
into details. Equation 3 can be written as(

dr

dτ

)2

=

(
E

m

)2

−
(

1 − 2M

r

)[
1 +

(L/m)2

r2

]
. (7)

Again comparing to equation 4 we see that we can make the following
substitutions: A = (E/m)2, B = 1 and

Veff(r)

m
=

√(
1 − 2M

r

)[
1 +

(L/m)2

r2

]

We have defined the effective potential such that the square of the effective
potential appears in equation 7, different from the previous cases. This is
just to have an effective potential with units energy. Note that A is now
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Figure 6: A bound object in elliptical orbit in a Newtonian effective po-
tential.

the energy per mass E/m squared instead of just E/m as we had in the
above examples. In equation 4 we only required A to be a constant, it
is not required that it equals energy. So we still have exactly the same
case as we had above and we can use the same argumentation. Note
one more difference: The effective potential goes to V (r) → 1 for large
distances instead of V (r) → 0 as above (see the plot of the effective
potential in figure 7). The reason for this is that the rest energy for
a particle in relativistic dynamics is E/m = 1. If the velocity of the
object is zero at large distances then E/m = 1 whereas in Newtonian
dynamics V (r) → 0 because E/m = 0 at large distances. Remember
that in Newtonian dynamics we do not consider the rest energy E = m.
This makes one difference in our argumentation with respect to above.
In the Newtonian case, the limiting energy deciding whether the object
would be trapped in the potential and therefore stay in a bound orbit
or if it would escape to infinity was E/m = 0. As we see, in relativistic
dynamics this limit is E/m = 1. If E/m < 1 then the ball starts falling
with zero velocity at some point on the hill below E/m = 1 and it can
therefore never escape to r → ∞, it will start orbiting. If however the
energy E/m > 1 it has the possibility to escape to infinity as it will have
a non-zero velocity as r → ∞ (check that you understand this by looking
at equation 7 and figure 7).

Looking at figure 7 we see one radical difference in the shape of the effective
potential with respect to the Newtonian case. At a certain critical radius
r = rcrit the potential has a peak and thereafter it falls steeply downwards
towards r = 0. This is not surprising: Any particle which passes inside
the horizon at r = 2M cannot escape. We see from figure 7 that even
objects with energies larger than E/m = 1 (objects which are not bound
in the classical sense) may be swallowed by the black hole. The objects
with an energy E/m larger than the critical energy Ecrit/m will pass too
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Figure 7: A bound object in elliptical orbit in a Schwarzschild effective
potential.

Figure 8: Perihelion precision of Mercury.

9



Figure 9: Info-figure: This simulated view based on real data shows stars
orbiting the supermassive black hole at the center of the Milky Way along
with blue lines marking their orbits. Also, a gas cloud (above center,
with its orbit shown in red) has recently been observed approaching the
black hole at more than 8 million km/h. The stars and the cloud are
shown in their actual positions in 2011. Extremely precise measurements
of the stellar orbits in the galactic center show that the supermassive
black hole, formally known as Sgr A* (pronounced Sagittarius A star),
has a mass of 4.1 million solar masses. The interstellar dust that fills the
galaxy blocks our view of the Milky Way’s central region in visible light,
but astronomers use infrared wavelengths that can penetrate the dust to
probe the region.(Figure: ESO)
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close to the object, so close that r < rcrit and it is captured by the black
hole. In the Newtonian case, this object would have a large enough energy
to escape as E/m > 1. In the exercises you will derive an expression for
Ecrit. An object which enters the black hole with an energy E = Ecrit

equal the critical energy will make a few orbits around the black hole at
r = rcrit before coincidences will make tiny changes to the energy of the
object. These tiny changes may go in either direction, either the object
will escape or the object will plunge into the black hole. We thus have
three possibilities:

• E/m < 1 which gives orbits

• 1 < E/m < Ecrit/m for which the object can move to infinity

• E/m > Ecrit/m for which the object will plunge into the black hole

There is one more important difference between the relativistic and the
Newtonian effective potential. We will now consider a planet in orbit
around a star. Because of the peak at r = rcrit, the potential rises more
steeply after the minimum than in the Newtonian case. A planet moving
inwards in its orbit towards the star will thus have to climb up this steeper
potential and will therefore slow down more close to the perihelion (the
point in the orbit of a planet closest to the star). The radial velocity of
the planet in the parts of the orbit close to the star is thus slower than
in the Newtonian case. Since the planet then spends more time in the
orbit close to the star, the planet now also has more time to move in the φ
direction for which there is no slow-down. Thus, in general relativity the
planet has moved more in the φ direction after passing close to the star
than it would in the Newtonian case. How does this affect the orbit? The
result is that the perihelion moves around the star. This is illustrated in
figure 8. For each orbit, the perihelion moves a little bit in φ direction. In
Newtonian physics, the perihelion stays at the same point. This φ motion
of the perihelion is called perihelion precession.

Long before Einstein discovered the general theory of relativity, it was
well known that Mercury, the planet closest to the Sun, had a strong
perihelion precession. A large part of this precession could be attributed
to the gravitational forces from other planets in the solar system. But the
gravitational attraction from other planets was not able to explain the full
precession. A little part remained and it turned out that general relativity
accounts for exactly this difference.

4 Inside the horizon

In the previous lecture we studied an object falling into the black hole from
rest at a large distance from the black hole. We found that the conserved
energy gave (

1 − 2M

r

)
dt

dτ
= 1.
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Using this, we obtained the speed of the object as measured by the far-
away observer

dr

dt
= −

(
1 − 2M

r

)√
2M

r

and the speed of the object measured by the local shell observers as the
object passes the shells

drshell

dtshell

= −
√

2M

r
.

What is the velocity dr/dτ measured on the wristwatch time τ of the
falling object? Using these three equations we can write

dr

dτ
=

dr

dt

dt

dτ
= −

(
1 − 2M

r

)√
2M

r

(
1 − 2M

r

)−1

= −
√

2M

r
. (8)

Even when measuring velocity on the wristwatch of the object, the velocity
approaches the speed of light at the horizon and gets larger than the speed
of light inside the horizon. But who measures this velocity? Nobody! In
this velocity measurement, length is measured by the far-away observer
(who cannot measure anything after the object has entered the horizon)
and time is measured on the wristwatch of the falling object. We also
learned that inside the horizon there are no shell observers to measure the
velocity since you cannot be at rest inside the horizon. A local observer
sitting in an unpowered spaceship passing the object will always measure
that the velocity is less than unity. Why? Because any freely falling
observer is in a local inertial frame for a short moment when the spaceship
passes nearby, even when inside the horizon. So for the freely falling
observer special relativity applies (for a short moment when the spaceship
passes nearby)) and he will always measure the velocity of the object as
being less than the velocity of light.

How long will it take for the object to reach the singularity in the center
from the moment it enters the horizon? We can integrate equation 8 to
find the time measured on the wristwatch of the object

τ = −
∫ 0

2M

dr

√
r

2M
= −

[
2

3

√
r

2M
r

]0

2M

=
4M

3
.

How long will it take for an observer falling into a black hole with one
solar mass to go from the horizon to the singularity? Measured on the
wristwatch of the observer it takes

τ =
4M�

3
=

4 × 2 × 1030 kg × 7.42 × 10−28 m/kg

3
≈ 2000 m ≈ 7 µs

In problem 3, you will study how the astronaut in a spaceship inside the
horizon experiences the world.
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5 Problems

Problem 1 (2–3 hours)

A rocket is launched from shell r = 20M around a black hole of mass M
with velocity vshell = 0.993 at an angle θ = 167◦ with the outward pointing
vector from the black hole (see figure 10). Just after launch, there is a
problem with the engines and they stop. The shell observers at shell
r = 20M need to make another rocket to rescue the astronauts, but this
takes a long time. The astronauts are worried that they will be captured
by the black hole. In this exercise we will try to find out whether the
rocket will be captured by the black hole or not. The angular momentum
of the rocket is L and the mass of the rocket is m. In this exercise you
will need the following relation a couple of times

dx

dτ
=

dx

dtshell

dtshell

dτ
,

where x can be any quantity.

1. First we need to find out the shape of the effective potential. Use the
general relativistic expression for the effective potential to show that
the minimum and the maximum of the effective potential are located
at the following distances(measured in Schwarzschild coordinates)
from the black hole

rextremum =
(L/m)2

2M

(
1 ±

√
1 − 12M2

(L/m)2

)
.

Which of these two solutions is the maximum of the potential?

2. Show that the angular momentum per mass for the rocket can be
written as

L

m
= r2dφ

dτ
= rγshellvshell sin θ,

where γshell = 1/
√

1 − v2
shell. Hint 1: Remember that for short time

intervals dtshell, the shell observers can use special relativity. Hint
2: How could we write dt/dτ in special relativity?

3. Use the general relativistic expression for E/m to show that the
total energy per mass of the rocket can be written as

E

m
=

√
1 − 2M

r
γshell

4. Insert numbers in the expression for L/m and draw the potential (by
hand using the information you have obtained from the previous
exercises) having r in units of M on the x-axis and numbers for
Veff/m on the y-axis.

5. Will the rocket be captured by the black hole?
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Figure 10: Rocket launched from shell r = 20M inwards at an angle θ.
Note: Figure not to scale.

6. If they are captured by the black hole, how long does it take (on
the wristwatch of the astronauts) to reach the singularity from the
moment they enter the horizon. For simplicity ignore the spin of the
rocket. (give the answer in seconds assuming that this is the black
hole in the center of the Milky way, M ≈ 4 × 106M�).

Important hint: You cannot use the result given in the text. Check
that you understand why and find the correct result. In the end you
will need to do an ugly integral. Go to ’The Integrator’ (http:
//integrals.wolfram.com/index.jsp) and type

1/sqrt(a+b/x).

7. What will happen with the astronauts just before entering the sin-
gularity? Draw an astronaut and draw the gravitational forces (ok,
let’s cheat and use forces for a moment since they are easier to draw
than spacetime geometry). Which shape will he/she have just before
reaching the center?

Problem 2 (1–2 hours)

In this exercise we will make a python (or matlab or whatever) code to
plot the orbit of the spaceship in the previous exercise. We will start at
r = 20M and evolve the position of the spaceship forward in time using
equations (2), (3).
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1. Define variables for (L/m)/M and (E/m) and give them the values
you found in the previous exercise. Define a variable for the distance
from the black hole r/M and give it the initial value of 20. Finally
define a variable φ which is the angular position with respect to the
black hole. We give φ an initial value of zero. Define a variable which
is the number of time steps we will use. Set the variable to 1000.
Finally define a variable which is the proper time step ∆τ = 0.01.

2. Now, define two arrays both with size equal to the number of time
steps (1000). The first array will contain the r position at each time
step, the other will contain the φ position at each time step. Set the
first element in both arrays to the current value of r and φ.

3. Make a FOR loop over all time steps. For each step, update r and
φ with the increments ∆r and ∆φ until r/M < 2.

4. Finally we need to plot the orbit. Make two arrays x and y convert-
ing the arrays with r and φ values from polar to Cartesian coordi-
nates. The black hole is at position x = 0 and y = 0. Now we have
two arrays with the x and y position of the spaceship at different
time steps. Now plot a dot at each step in the orbit.

5. Now we will overplot the Schwarzschild radius: Make an array with,
say 100 elements, with the r position of the horizon r = 2. Make a
corresponding array with equal number of elements having numbers
going from 0 to 2π being the φ position. Then transform from polar
to Cartesian coordinates exactly as you did in the previous step and
plot the set of x and y positions you have obtained. Now you will
see a circle showing the horizon.

6. How large angle ∆φ did the spaceship revolve around the black hole
before entering the horizon?

Problem 3 (1–2 hours)

We are in a spaceship inside the horizon falling towards the central sin-
gularity. We are trying to find a way to escape. In order to check all
possibilities we send one light beam backwards away from the central sin-
gularity and one forward towards the central singularity. In order to study
how these beams of light are moving we need to write the Schwarzschild
line element in terms of our wristwatch time t′ instead of Schwarzschild
time t. We will make this change of coordinates already before entering
the horizon as this allows us to use shell frames as a help. Assume in the
following that we have velocity only in the radial direction. Assume also
that we started falling freely with velocity v = 0 far away from the black
hole.

1. Use the Lorentz transformations to show that time intervals mea-
sured on the wristwatch of the astronauts are related to time and
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space intervals measured by shell observers as

dt′ = −vshellγshelldrshell + γshelldtshell,

where vshell and γshell are based on the local velocity of the astro-
naut measured by the shell observer at the shell which the spaceship
passes.

2. Use the expressions relating shell coordinates and Schwarzschild co-
ordinates to show that

dt′ = − vshellγshelldr√(
1 − 2M

r

) + γshell

√(
1 − 2M

r

)
dt.

3. In the previous lecture, we deduced the shell velocity vshell of a falling
spaceship starting with v = 0 far from the black hole. Go back and
check this expression. Insert it in the previous expression and show
that

dt = dt′ −
√

2M/rdr(
1 − 2M

r

) .

4. Use this to substitute dt with dt′ in the normal Schwarzschild line
element and show that the Schwarzschild line element can be written

ds2 = dτ 2 =

(
1 − 2M

r

)
(dt′)2 − 2

√
2M

r
dt′dr − dr2 − r2dφ2.

Note that this form of the Schwarzschild line element does not have
a singularity at r = 2M .

5. We will now study the motion of the two light beams that we emit,
one forwards and one backwards. We know that for light, proper
time is not moving dτ = 0. The light beams in this case are moving
only radially so dφ = 0. Show that the speed of the two beams can
be written as

dr

dt′
= −

√
2M

r
± 1.

After entering the horizon, do the astronauts in the spaceship mea-
sure the speed of the light beams to be larger than the speed of
light? (think twice before answering)

6. In figure 11 we show the worldline of the spaceship falling into the
black hole. We have also plotted the world lines of light beams
emitted from the spaceship at various points in the trajectory. Use
the previous equation to explain why the world lines of the light
beams look like they do in the figure.

7. What happens to the light beams. . . in which direction does each of
them move? Suppose that the astronauts had a small rescue rocket
which could accelerate to a velocity close to the speed of light. They
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went into the rescue rocket and went in the direction opposite of the
black hole. What would happen? How would their motion look like?
Do you understand better why nothing can escape the black hole?

Figure 11: Worldline of the rocket (marked by a balls) and parts of the
worldlines of the forward and backward light beam (arrows) at several
points during the free fall into the black hole.
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AST1100 Lecture Notes

18: General Relativity
Gravitational lensing

1 Motion of light in Schwarzschild space-

time

There is one huge difference between Newton’s and Einstein’s theory of
gravity. In the Einstein equation

Gµν = 8πTµν ,

energy (not only mass but total energy) enters in the energy momentum
tensor on the right hand side. This means that not only mass but also
pure energy (for instance in the form of light or other kinds of radiation)
give rise to curvature of spacetime as described by the left side of the
equation. This means that light gives rise to a gravitational field. In
the same manner, light is also affected by a gravitational field. We know
that light follows a spacetime path such that ds = 0. If the geometry
of spacetime is the Schwarzschild geometry, this line will necessarily be
different than if the geometry is Lorentz geometry. Hence the general
theory of relativity predicts light rays to be deflected in a gravitational
field. We will now look at the step-by-step motion of a ray of light through
Schwarzschild spacetime in the same way as we did for a particle in the
previous lecture. There is however one difference: We cannot use the
proper time τ as the time parameter as ∆τ = 0 always for light. We need
to eliminate ∆τ from the equation of motion for particles. We can do this
by using the expression for relativistic energy

dτ

dt
=

1 − 2M
r

E/m
.

Using this expression to eliminate ∆τ in equations (2) and (3) from the
previous lecture and taking the limit m → 0 since light is massless, we
obtain (check!):
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∆r = ±
(

1 − 2M

r

)√
1 −

(
1 − 2M

r

)
(L/E)2

r2
∆t (1)

r∆φ = ±L/E

r

(
1 − 2M

r

)
∆t. (2)

These equations can again be used to describe the trajectory (r, φ) of light
as the far-away time t advances. We will use these equations to look at
the speed of light in various cases. First we will emit a beam of light
radially towards the center of the black hole. This is purely radial motion
so ∆φ = 0 and the angular momentum is zero L = 0. Equation 1 then
gives

vr =
dr

dt
= −

(
1 − 2M

r

)
.

We see that the speed of light is not one as we are used to. Surprise,
surprise! Special relativity was constructed based on the fact that the
speed of light is one for all observers. In general relativity this is no longer
true: We see here that the speed of light as measured in Schwarzschild
coordinates (r, t), the coordinates of the far-away observer, is different
from one. And moreover as r → 2M the speed of light goes to zero. Light
slows down to zero close to the horizon (for the far-away observer), just
as material particles do.

Now, this was measurements made by the far-away observer who makes
measurements based on observations made by different local observers.
What speed of light does a shell observer on a shell close to the horizon
measure? Does he also see that light slows down and eventually stops?
This was not the case for material particles, we will now make the same
calculations for light.

The shell observer measures the speed of the light beam as it passes his
shell. He makes the measurement in a short time interval such that he
can be considered to be in a local inertial frame. Then his geometry is
Lorentz geometry

dτ 2 = dt2shell − dr2
shell

(you can show this last expression simply by inserting the expressions
relating dr and drshell as well as dt and dtshell into the Schwarzschild line
element) and he will necessarily measure

drshell

dtshell

= −1

We can thus change the principle of invariant speed of light to: A local
observer, an observer who measures the speed of light directly, will always
measure the speed of light to be one. The far-away observer who bases his
measurement on the collection of observations from several different local
observers will see a different speed of light.
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We will also check what happens to a beam of light which moves tangen-
tially. For this light ∆r = 0 which inserted in equation 1 gives

L

E
=

r√(
1 − 2M

r

) .
Inserting this in equation 2 we get (check!)

vφ = r
dφ

dt
=

√(
1 − 2M

r

)
.

Also light moving tangentially has a speed different from one, but note
the square root which is not present for the radial velocity. We have that
vr = v2

φ, light moves faster in the the tangential direction than in the
radial direction. Also in this case vφ → 0 at the horizon. Again, this
was light speed measured in Schwarzschild coordinates (r, t) and therefore
the light speed measured by the far-away observer. Local observers would
again measure a tangential light speed of one.

2 Impact parameter

To study the motion of light in a gravitational field we need to define
the impact parameter b. The impact parameter is used in many fields of
physics and astrophysics, for instance to study colliding particles. In figure
1 we see a large central mass M (for instance a black hole) and a small
particle far away from the central mass moving in any given direction.
Draw a line passing through the particle going in the direction of motion
of the particle. Then draw another line which is parallel to the first line but
which passes through the center of the black hole. The distance between
these two lines is called the impact parameter. It is important to note
that the first line is drawn on the basis of the movement of the particle
when the particle is so far away that it has not yet been influenced by
the gravitational field. We will soon see that this impact parameter will
decide the future motion of the photon.

We can calculate the angular momentum of the photon when it is still far
away as

L = ~r × ~p = rp sin θ = pb.

The angle θ is the angle between ~r pointing at the particle from the center
of the black hole and ~p the momentum vector of the particle. The geometry
is shown in figure 2 explaining why we can write b = r sin θ. Thus, the
impact parameter of a particle can be written as the ratio between angular
and linear momentum

b =
L

p
.
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Figure 1: Defining the impact parameter.

Figure 2: The impact parameter expressed in terms of angular momentum.
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For a photon, we have that p = E so that

b =
L

E
.

(valid for photons only). Using this, we can rewrite equation (1) and (2)
using the impact parameter as (check!)

dr

dt
= ±

(
1 − 2M

r

)√
1 −

(
1 − 2M

r

)
b2

r2
(3)

rdφ

dt
= ± b

r

(
1 − 2M

r

)
. (4)

In the exercises you will show that the equations of motion for a photon
can be written as

A = Bv2
r,shell + Veff(r)2,

where A = B = 1/b2 and

Veff(r) =
1

r

√(
1 − 2M

r

)
.

We see again that we have an equation on the same form as equation (4)
in the previous lecture. We know that we need to compare the value of
the constant A (which usually contains the energy E/m, but which this
time contains only the impact parameter) with the shape of the effective
potential. For a material body we showed in the previous lecture that
it was the energy E/m which appeared in the constant A and therefore
it was the value of this energy which decided whether the particle would
move in an orbit, escape to infinity or be swallowed by the black hole.
For the photon, we see that it is the impact parameter alone and not the
energy which decides its destiny.

In figure 3 we see the effective potential for light. The first thing which
strikes us in this figure is that the potential does not exhibit a minimum
as all the other potentials we have discussed so far. The consequence is
that light cannot go in a stable orbit. If 1/b2 is lower than the peak in
the figure, the light will approach the black hole, be deflected in some
direction and escape to infinity (do you see why?). If 1/b2 is larger than
the value at the peak in the figure, light will be captured by the black hole.
In the exercises you will show that the peak in the potential is located at
r = 3M for which 1/b2 = 1/(27M2).

Light which approaches the black hole with 1/b2 equal to the value of the
potential at the peak 1/(27M2) will go in an unstable orbit at r = 3M .
For this reason r = 3M is called the light sphere. All the stars around
a black hole radiate light in all possible directions with a huge range of
impact parameters. There will always be light approaching the black
hole with an impact parameter equal to the critical impact parameter
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Figure 3: The effective potential for light.

1/b2
crit = 1/(27M2) such that the light will orbit the black hole at the

light sphere. A shell observer at the light sphere will see a ring around
the black hole with several copies of images of the stars in the sky. The
light will not stay in the light sphere for very long: Staying at the peak of
the potential means being in an unstable orbit. Tiny fluctuations in the
impact parameter will make the light either plunge into the black hole or
escape. Coincidences will decide. This is exactly what we saw for material
bodies approaching the black hole with an energy such that it balanced
on the peak of the potential for a few revolutions and then either plunged
or escaped.

3 Deflection of light

In figure 4 we see light approaching a star at a large distance with an
impact parameter such that the light will pass the star, be deflected and
then escape to infinity. The question is with how large an angle ∆φ the
light is deflected. If the light is significantly deflected by a star it would
mean that we cannot trust the position of objects that we observe on the
sky: If the light from distant galaxies is deflected by all the stars it passes
on the way to Earth, the original direction of the light and hence of the
galaxy would be lost. We need to calculate how large the deflection is to
find out whether this could be a problem for astronomical observations or
not.

In figure 5 we show the situation in detail: Light with impact parameter b
is approaching a star of mass M . We have defined the φ coordinate such
that φ = 0 when the light is infinitely far away. If light had not been
deflected by the gravitational field, it would continue in a straight line to
infinity at φ = π. But we know that the light is deflected an angle ∆φ
such that the light goes to infinity at φ = π+∆φ. We will now study light

6



Figure 4: Deflection of light by a star. The dotted line is the direction
light would have taken if no deflection had taken place.

Figure 5: Deflection of light by a star. Symmetry makes the situation
equal on either side of the point where the distance between the light
beam and the star is minimal r = R and the radial velocity of the beam
is zero.
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which has an impact parameter b such that it passes the star with radial
shell velocity vr,shell equal to zero at a distance R from the star (see figure
5). In order to calculate the deflection ∆φ for this beam of light we will
use the equations of motion for light in Schwarzschild geometry given by
equations (1) and (2). Dividing the two equations by each other we find

dφ =
dr

r2

√
1
b2
− 1

r2

(
1 − 2M

r

) .
We need to integrate this equation to obtain the deflection ∆φ from the
particle arrives at r = ∞, φ = 0 to r = ∞, φ = π + ∆φ. Because of
symmetry, it is sufficient to find the deflection ∆φ/2 occurring during the
trip from (r = ∞, φ = 0) to (r = R, φ = π/2 + ∆φ/2) (see again figure
5). The symmetry of the problem tells us that this deflection equals the
deflection occurring during the trip from (r = R, φ = π/2 + ∆φ/2) to
(r = ∞, φ = π + ∆φ). The geometry of the problem is detailed in figure
5. We therefore need to perform the following integration (integrating the
previous equation)∫ π/2+∆φ/2

0

dφ =

∫ R

∞

dr

r2

√
1
b2
− 1

r2

(
1 − 2M

r

) .
To make the integration easier we will make the substitution u = R/r
giving ∫ π/2+∆φ/2

0

dφ =
1

R

∫ 0

1

du√
1
b2
− u2

R2

(
1 − 2M

R
u
) .

Before integrating there is one more information which we have not used:
The fact that we know the impact parameter b. The radial shell velocity
at r = R is equal to zero. In problem 1 you will find an expression for
the radial shell velocity of light (equation 7) as a function of distance and
impact parameter. Setting the radial velocity to zero this equation gives
us

1

b2
=

1

R2

(
1 − 2M

R

)
, (5)

which we can insert in our integral allowing us to get rid of the impact
parameter. The integral now reads

π

2
+

∆φ

2
=

∫ 1

0

du√(
1 − 2M

R

)
− u2

(
1 − 2M

R
u
) .

For stars, we normally have R >> 2M (check that this must be so for
the Sun: find the radius of the Sun expressed in Solar masses. Remember
that R must be larger than the radius of the Sun (why?)). Therefore we
define x = M/R << 1 and we will try to Taylor expand the integrand in
the small value x. The integrand can be written as

f(x) = (1 − 2x − u2(1 − 2xu))−1/2 ≈ f(0) + f ′(0)x
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Taking the derivative of f(x) with respect to x we find

f(0) =
1√

1 − u2
f ′(0) =

1 − u3

(1 − u2)3/2

Thus the integral can be written

π

2
+

∆φ

2
=

∫ 0

1

du√
1 − u2︸ ︷︷ ︸

π/2

+
M

R

∫ 0

1

[
1

(1 − u2)3/2
− u3

(1 − u2)3/2

]
du︸ ︷︷ ︸

2

.

The solution to these integrals can be found in tables of integrals. We get

∆φ

2
=

2M

R
,

or

∆φ =
4M

R
.

In the exercises you will see how close to a star light needs to pass for
the deflection to be important. You will also show that light from stars
which pass close to the surface of the Sun will be deflected significantly.
Stars which we observe in a direction close to the surface of the Sun will
thus be observed in the wrong position on the sky. The stars will be
shifted due to the deflection of light. This is a good test of the theory of
general relativity: We now have a formula to predict exactly by how large
angle the position of a star on the sky will change when viewed close to
the surface of the Sun. The problem is that the light from the Sun is so
strong that we cannot see stars which have a position on the sky close
to the Sun. The only possibility to observe these stars is during a total
solar eclipse. During a solar eclipse in 1919, this effect was measured for
the first time: Stars which were seen close to the surface of the Sun were
measured to have shifted their position with exactly the angle predicted
by general relativity. This was the discovery which made Einstein famous.

4 Gravitational lensing

The gravitational deflection of light is used today to study the most remote
objects in the visible universe. In figure 6 we show a typical situation. A
quasar (a black hole with gas falling into it producing strong radiation at
several wavelengths, quasars are one of the most powerful radiation sources
in the universe) is located at a distance dS and a cluster of galaxies with
mass M is located at distance dL. The indices S and L refer to ’source’
and ’lens’. The quasar is the source of light and the cluster of galaxies
deflects this light similar to an optical lens. For this reason we call the
cluster of galaxies for the ’lens’ and the effect of light deflection is called
gravitational lensing.
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Figure 6: The source on the left (a quasar), the lens in the middle (a
cluster of galaxies) and the Earth on the right receiving the radiation
from the quasar from several angles.

The limiting angle θem (see figure 6) is the angle that the light emitted
from the quasar needs to have in order to reach Earth. Light emitted with
a smaller angle will be deflected too much, light emitted with a larger angle
will be deflected too little. Only light with angle θem will be deflected in
such a way that the light will reach us and we will see the quasar. The
figure shows only a two dimensional plane, taking into account the three
dimensional geometry of the problem, light emitted with an angle θem will
reach us from all direction the result being that we see the quasar as a ring
of light around the cluster (see figure 9). We call this ring an Einstein
ring. The angle θE is the observed angular radius of the Einstein ring
(you find the angle both in figure 6 and 9 check that you understand the
relation between the two figures). In the exercises, you will show that this
angle can be written as

θE =

√
4M(dS − dL)

dLdS

, (6)

which is called the lensing formula.

From spectroscopic measurements, the distances dS and dL of the quasar
and the cluster are normally known. The angular radius of the Einstein
ring can be measured by observations. Combining these numbers, the
lensing formula can be used to find the mass of a cluster of galaxies. We
remember from previous lectures that we can use the virial theorem to find
the mass of clusters of galaxies. The mass estimates of clusters obtained
using the lensing formula is based on assumptions very different from
those used in the virial theorem approach. Thus we have two independent
measurements of the mass of the cluster. These two ways of measuring
mass are in good agreement taking into account the uncertainties in the
two methods. Both methods tell us that there is far more dark than
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Figure 7: Info-figure:This illustration shows how gravitational lensing
works. The gravity of a large galaxy cluster is so strong that it bends,
brightens and distorts the light of a distant galaxy behind it. In this case
observers on Earth see two images of the same object. Note that in reality,
the distant galaxy is much farther away than it appears here. Gravita-
tional lensing is an impressive astronomical tool; it can be used to detect
exoplanets, learn about distant galaxies and galaxy clusters, and measure
dark matter, dark energy and the age of the universe. Astronomer Fritz
Zwicky postulated in 1937 that gravitational light bending could allow
galaxy clusters to act as gravitational lenses. It was not until 1979 that
this exotic phenomenon was confirmed observationally with the discovery
of the ”Double Quasar” QSO 0957+561. The Norwegian astronomer Sjur
Refsdal made pioneering work on gravitational lensing and microlensing
in the 1960s, 70s and 80s. (Figure: NASA, ESA & L. Calcada)
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Figure 8: Info-figure: Believe it or not, this is a real picture of the sky,
taken with the Hubble Space Telescope. The gravity of an unusually
massive galaxy (the fuzzy yellow object in the middle) has gravitationally
distorted the light from a much more distant blue galaxy. More typically,
such light bending results in two discernible images of the distant galaxy,
but here the lens alignment is so precise that the background galaxy is
distorted into nearly a complete Einstein ring! The blue galaxy’s redshift
is approximately 2.4. This means we see it as it was only about 3 billion
years after the Big Bang.(Figure: ESA/Hubble & NASA)

Figure 9: The cluster of galaxies in the middle and the Einstein ring being
the lensed image of the quasar behind. The angular radius of the ring is
θE.
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Figure 10: Detailed geometry of the situation in figure 6.

luminous matter in clusters of galaxies being another confirmation of the
existence of dark matter.

To obtain an Einstein ring, the quasar needs to be exactly behind the
center of the cluster of galaxy. Furthermore the cluster needs to have a
spherical mass distribution. This is basically never the case, a complete
Einstein ring is very rarely observed. What we rather see are small arcs
around the cluster. By studying these arcs combined with more advanced
theory of gravitational lensing, one can even infer the distribution of mass
in the cluster of galaxies.

Finally I will mention another important use of gravitational lensing based
on microlensing. The idea of microlensing is based on the following obser-
vation: The lens deflects light from the source towards Earth, light which
otherwise would not have reached us. The lensing effect increases the total
amount of photons from the quasar arriving to the Earth. Gravitational
lensing does not only happen at the scale of clusters of galaxies. Even if
an object passes in front of a star, gravitational lensing occurs. In this
case, the Einstein ring is so small that it cannot be resolved on the sky.
Only one effect of the lensing is directly observable: The fact that more
light is directed towards us. The flux we receive from the star increases
when the object is in front of the star. This is called microlensing.

Microlensing has been used to look for ’lumps’ of dark matter in the
Milky Way, so-called MAssive Compact Halo Objects (MACHO). If these
MACHOs, lumps of dark matter orbiting the center of the Milky way,
exist they should cause microlensing of stars in the LMC and SMC (Large
and Small Magellanic Clouds). The LMC and SMC are dwarf galaxies
orbiting the center of the Milky Way. The MACHOs are expected to have
orbits between us and the Magellanic clouds. When the MACHOs pass in
front of stars in the Magellanic clouds microlensing will increase the flux
from these stars for a few days or weeks. An extensive search program is
running looking for these microlensing events in the Magellanic clouds in
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order to get closer to the solution of the dark matter mystery.

5 Problems

Problem 1 (30 min.–1 hour)

Use the equations of motion for a photon (equation 3) to show that the ra-
dial light speed drshell/dtshell observed by the shell observer can be written
as

1

b2

(
drshell

dtshell

)2

=
1

b2
−
(
1 − 2M

r

)
r2

. (7)

Look at equation (4) and (7) from the previous lecture and show that
we can define an effective potential for light (based on the shell velocity
rather than the velocity dr/dt) as

V (r) =

√(
1 − 2M

r

)
r2

.

Problem 2 (30 min.–1 hour)

1. By taking the derivatives of the effective potential for light, show
that the potential has only one extremal point which is a maximum.
Explain why this means that there are no stable orbits for light.

2. Show that this maximum occurs at r = 3M and explain why we call
this radius the light sphere.

3. Show that the criterion deciding whether light will escape a black
hole or plunge into it is given by the critical impact parameter as

bcrit = 3
√

3M ≈ 5.2M

Problem 3 (1–2 hours)

In 1919 a solar eclipse gave one of the first opportunities to check the
validity of Einstein’s theory. Stars which appear very close to the Sun
can normally not be seen due to the much stronger light from the Sun.
Only light from the stars which appear very close to the Sun on the sky
would be significantly affected by the gravitational field of the Sun. The
only possibility we have to see these stars is during a solar eclipse. The
light from the Sun is blocked and the stars can be seen. If the light from
these stars pass close to the surface of the Sun they will be deflected by
the solar gravitational field. This deflection will shift the position of the
star on the sky.
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1. Draw the situation showing why the apparent position of such a
star is shifted and whether it will be shifted towards the Sun or
away from the Sun. Then show that the angular shift on the sky is
given by ∆φ = 4M/R (you can assume that you already know that
light will be deflected by this angle, but it is not obvious that this
equals the apparent angular shift on the sky, this is what you need
to show by the figure/geometry). You will need a good drawing and
some geometrical consideration to arrive at the answer.

2. Calculate the angular shift in position in arc seconds assuming that
the light passes very close to the solar surface.

3. Repeat the previous calculation for the Moon. Is the same effect
measurable for stars close to the Moon? (Here you need the mass of
the Moon)

Problem 4 (60–90 min.)

In this exercise, we will deduce the lensing formula (equation 6). Go back
and read what the different symbols in the lensing formula mean. Also go
and check that you understand figures 6 and 9 well.

1. First use the fact that R >> M to show that light with impact
parameter b will pass the cluster at a distance R ≈ b from the center
of the cluster at the closest point. (Hint: equation 5). This is the
reason why the closest distance of the light beam to the cluster is
given by b in figure 6.

2. Show that the deflection angle ∆φ is given by

∆φ ≈ 4M

b
.

3. Only light emitted with an angle θem will reach Earth. We just
found out that this light will be deflected an angle 4M/b and will
reach Earth in an angle θE. In figure 10 we show the geometry tin
more detail. Make sure that you understand the figure and why all
the different angels can be written the way they are written in this
figure. Use the figure to show that

θem + θE =
4M

b
. (8)

4. We will assume that the distances dL and dS as well as dL − dS are
much larger than the distance between the center of the cluster and
the light beam at the closest given by b. If this is the case (as it
always is in this situation), then the angles θE and θem are so small
that we can use the small angle formula. Show that

θem ≈ b

dS − dL

, θE ≈ b

dL

.
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5. Now you have enough information to show the lensing formula

θE =

√
4M(dS − dL)

dLdS

,

6. An Einstein ring is observed around a cluster of galaxies. The radius
of the Einstein ring is 3′. The distance to the cluster has been
estimated to be 109 light years. Using spectroscopy on the light
from the Einstein ring it is recognized as a quasar and the distance
to the quasar is estimated to be 1010 light years. What is the mass
of the cluster of galaxies expressed in solar masses?
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AST1100 Lecture Notes

19: Nuclear reactions in stellar cores

Before embarking on the details of thermonuclear reactions in stellar cores,
we need to discuss a few topics. . .

1 Some particle physics

Nature is composed of three kinds of elementary particles: leptons, quarks,
and gauge bosons. Nature also has four forces acting on these elementary
particles: the strong and weak nuclear forces, the electromagnetic force
and the force of gravity (from the point of view of general relativity the
latter is not a force, from the point of view of particle physics, it is).
Actually, it has been discovered that the weak nuclear force and the elec-
tromagnetic force are two aspects of the same thing. At higher energies
they unify and are therefore together called the electroweak force.

The leptons can be divided in two groups, the 3 ‘heavy’ (with much more
mass than in the other group) leptons and 3 light leptons called neutrinos
(with a very small mass). Each heavy lepton has a neutrino associated
with it. In all there are thus 6 leptons

• the electron and the electron associated neutrino.

• the muon and the muon associated neutrino.

• the tau particle and the tau associated neutrino.

In collisions involving the electron, an electron (anti)neutrino is often cre-
ated, in collisions involving the muon, a muon (anti)neutrino is often cre-
ated and the same goes for the tau particle. Each lepton has lepton number
+1 whereas an antilepton has lepton number -1. This is a property of the
particle similar to charge: In the same way as the total charge is conserved
in particle collisions, the total lepton number is also conserved.

There are also 6 kinds of quarks grouped in three generations. In the order
of increasing mass these are

• the up (charge +2/3e) and down (charge −1/3e) quarks.

• the strange (charge −1/3e) and charm (charge +2/3e) quarks.
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• the bottom (charge −1/3e) and top (charge +2/3e) quarks.

A quark has never been observed alone it is always connected to other
quarks via the strong nuclear force. A particle consisting of two quarks is
called a meson and a particle consisting of three quarks is called a baryon.
Mesons and baryons together are called hadrons. A proton is a baryon
consisting of three quarks, two up and one down quark. A neutron is
another example of a baryon consisting of two down and one up quark.

In quantum theory, the forces of nature are carried by so-called gauge
bosons. Two particles attract or repel each other through the interchange
of gauge bosons. Normally these are virtual gauge bosons: Particles ex-
isting for a very short time, just enough to carry the force between two
particles. The energy to create such a particle is borrowed from vacuum:
The Heisenberg uncertainty relation

∆E∆t ≤ h

4π
, (1)

allows energy ∆E to be borrowed from the vacuum for a short time interval
∆t. The gauge bosons carrying the four forces are

• gluons in the case of the strong nuclear force

• W and Z bosons in the case of the weak nuclear force

• photons in the case of the electromagnetic force

• (gravitons in the case of the gravitational force: note that a quantum
theory of gravity has not yet been successfully developed)

In quantum theory, the angular momentum or spin of a particle is quan-
tized. Elementary particles can have integer spins or half integer spins.
Particles of integer spins are called bosons (an example is the gauge bosons)
and particles of half integer spin are called fermions (leptons and quarks
are examples of fermions. Fermions and bosons have very different statis-
tical properties, we will come to this in the next lecture.

Finally, all particles have a corresponding antiparticle: A particle having
the same mass, but opposite charge. Antileptons also have opposite lepton
number: -1. This is why a lepton is always created with an antineutrino in
collisions. For instance, when a free neutron disintegrates (a free neutron
only lives for about 12 minutes), it disintegrates into a proton and electron
and an electron antineutrino. A neutron is not a lepton and hence has
lepton number 0. Before the disintegration, the total lepton number is
therefore zero. After the disintegration, the total lepton number is: 0
(for the proton) + 1 (for the electron) -1 (for the antineutrino) = 0, thus
lepton number is conserved due to the creation of the antineutrino.

Now make a schematic summary of all the elementary particles and forces
that have been observed in nature.
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Figure 1: Info-figure: The Standard Model of particle physics is a the-
ory concerning the electromagnetic, weak, and strong nuclear interactions,
which mediate the dynamics of the known subatomic particles. The model
includes 12 fundamental fermions and 4 fundamental bosons. The 12 ele-
mentary particles of spin 1/2 (6 quarks and 6 leptons) known as fermions
are classified according to how they interact, or equivalently, by what
charges they carry. Pairs from each classification are grouped together to
form a generation, with corresponding particles exhibiting similar physical
behavior. Fermions respect the Pauli exclusion principle, and each fermion
has a corresponding antiparticle. Gauge bosons (red boxes) are defined as
force carriers that mediate the strong, weak, and electromagnetic interac-
tions. (Note that the masses of certain particles are subject to periodic
reevaluation by the scientific community. The values in this graphic are
as of 2008 and may have been adjusted since.) (Figure:Wikipedia)
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2 Mass in special relativity

Another topic which we need to discuss before studying nuclear reactions
is the notion of mass in the special theory of relativity. We have already
seen that the scalar product of the momenergy four-vector equals the mass
of a particle,

PµP
µ = E2 − p2 = m2. (2)

Imagine we have two particles with mass m1 and m2, total energy E1 and
E2 and momenta p1 and p2. Assume that they have opposite momenta
p1 = −p2 = p,

P 1
µ = (E1, p), P 2

µ = (E2,−p)

with E1 =
√

m2
1 + p2 and E2 =

√
m2

2 + p2 These two particles could for
instance constitute the proton and the neutron in a deuterium nucleus.
The question now is, what is the total mass of the two-particle system
(deuterium nucleus)? Let us form the momenergy four-vector for the
nucleus

Pµ = P 1
µ + P 2

µ = (E1 + E2, 0).

Using equation 2 we can now find the total mass of the two-particle system
(the nucleus),

M2 = PµP
µ = (E1 + E2)

2 = E2
1 + E2

2 + 2E1E2

= m2
1 + m2

2 + 2p2 +
√

(m2
1 + p2

1)(m
2
2 + p2

2)

where M is the total mass of the nucleus. We have two important obser-
vations: (1) Mass is not an additive quantity. The total mass of a system
of particles is not the sum of the mass of the individual particles. (2) The
mass of a system of particles depends on the total energy of the particles
in the system. The energy of particles in an atomic nucleus includes the
potential energy between the particles due to electromagnetic and nuclear
forces.

Consider an atomic nucleus with mass M . This nucleus can be split into
two smaller nuclei with masses m1 and m2. If total mass of the two nuclei
m1 and m2 is smaller than the total mass of the nucleus, the rest energy
is radiated away when the nucleus is divided. This is a nuclear fission
process creating energy. Similarly if the total mass of m1 and m2 is larger
than the total mass of the nucleus, then energy must be provided in order
to split the nucleus. The same argument goes for nuclear fusion processes:
Consider two nuclei with masses m1 and m2 which combine to form a larger
nucleus of mass M . If M is smaller than the total mass of the nuclei m1

and m2 then the rest mass is radiated away and energy is ’created’ in the
fusion process. In some cases (particularly for large nuclei), the mass M
is larger than the total mass of m1 and m2. In this case energy must be
provided in order to combine the two nuclei to a larger nucleus. We will
soon see that in order to produce atomic nuclei larger than iron, energy
must always be provided.
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3 Penetrating the Coloumb barrier

The strong nuclear force (usually referred to as the strong force) is active
over much smaller distances than the electromagnetic force. The strong
force makes protons attract protons and protons attract neutrons (and
vice versa). For two atomic nuclei to combine to form a larger nucleus,
the two nuclei need to be close enough to feel the attractive nuclear forces
from each other. Atomic nuclei have positive charge and therefore repulse
each other at larger distances due to the electromagnetic force. Thus for a
fusion reaction to take place, the two nuclei need to penetrate the Coloumb
barrier, the repulsive electromagnetic force between two equally charged
particles. They need to get so close that the attractive strong force is
stronger than the repulsive electromagnetic force. In figure 2 we show the
combined potential from electromagnetic and nuclear forces of a nucleus.
We clearly see the potential barrier at r = R. For a particle to get close
enough to feel the attractive strong force it needs to have an energy of at
least E > E(R). We can make an estimate of the minimal temperature
a gas needs in order to make a fusion reaction happen: The mean kinetic
energy of a particle in a gas of temperature T is EK = (3/2)kT (see
the exercises). The potential energy between two nuclei A and B can be
written as

U = − 1

4πε0

ZAZBe2

r
,

where ε0 is the vacuum permittivity, Z1 and Z2 is the number of protons
in each nucleus, e is the electric charge of a proton and r is the distance
between the two nuclei. For nucleus A to reach the distance R (see figure
2) from nucleus B where the strong force starts to dominate, the kinetic
energy must at least equal the potential energy at this point

3

2
kT =

1

4πε0

ZAZBe2

R
.

The distance R is typically R ∼ 10−15 m. Considering the case of two
hydrogen nuclei Z = 1 fusing to make helium Z = 2, we can solve this
equation for the temperature and obtain T ∼ 1010 K. This temperature is
much higher than the core temperature of the Sun TC ∼ 15× 106 K. Still
this reaction is the main source of energy of the Sun. How can this be?

The secret is hidden in the world of quantum physics. Due to the Heisen-
berg uncertainty relation (equation 1), nucleus A can borrow energy ∆E
from vacuum for a short period ∆t. If nucleus A is close enough to nu-
cleus B, the time ∆t might just be enough to use the borrowed energy to
penetrate the Coloumb barrier and be captured by the potential well of
the strong force. This phenomenon is called tunneling. Thus, there is a
certain probability that nucleus A spontaneously borrows energy to get
close enough to nucleus B in order for the fusion reaction to take place.

5



Figure 2: The repulsive Coloumb potential V (r) as a function of distance
between nuclei r. At small distances r we see the potential well from the
attractive strong forces.

4 Nuclear reaction probabilities and cross

sections

Quantum physics is based on probability and statistics. Nothing can be
predicted with 100% certainty, only statistical probabilities for events to
happen can be calculated. When nucleus A is at a certain distance from
nucleus B we cannot tell whether it will borrow energy to penetrate the
Coloumb barrier or not, we can only calculate the probability for the
tunneling to take place. These probabilities are fundamental for under-
standing nuclear reactions in stellar cores. These probabilities are usually
represented as cross sections σ.

The definition of the cross section is based on an imaginary situation which
is a bit different from the real situation but gives an intuitive picture of
the reaction probabilities and, most importantly, makes the calculations
easier. It can be proven that the calculations made for this imaginary pic-
ture gives exact results for the real situation. Instead of the real situation
where we have one nucleus A and one nucleus B passing each other at a
certain distance (and we want to know the probability that they react),
one imagines the nucleus B to be at rest and a number of nuclei of type A
approaching it. One imagines nucleus B to have a finite two dimensional
extension, like a disk, with area σ. Towards this disk there is a one dimen-
sional flow of A particles (see figure 3). If a nucleus A comes within this
disk, it is captured and fusion takes place, if not the nuclei do not fuse.
It is important to understand that this is not really what happens: fusion
can take place with any distance r between the nuclei. It might also well
be that A is within the disk and the fusion reaction is not taking place.
But in order to make calculations easier one makes this imaginary disk
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Figure 3: A particles streaming towards the disk with cross section
σ(E) around the B nucleus. A particles of energy E within the volume
v(E)∆tσ(E) will react with the nucleus B within time ∆t.

with an effective cross section σ saying that any nucleus A coming within
this disk will fuse. It can be shown that calculations made with this repre-
sentation gives correct reaction rates even though the model does not give
a 100% correct representation of the physical situation. Because of the
simplified mathematics, the cross section σ is the most common way of
representing a probability for a reaction or collision process to take place.
You will now see how this imaginary picture is used to calculate reaction
rates.

The disk cross section (tunneling probability) σ(E) depends on the energy
E of the incoming nucleus A. Thus the size of the immaginary disk (for
the nucleus B at rest) depends on the energy E of the incoming particle A.
We will now make calculations in the center of mass system. In problem
5 in the lectures on celestial mechanics, you showed that the total kinetic
energy of a two-body system can be written as (ignoring gravitational
forces)

E =
1

2
µ̂v2,

where µ̂ is the reduced mass µ̂ = (m1m2)/(m1 +m2). We showed that the
two-body problem is equivalent to a system where a particle with mass
M = m1 + m2 is at rest and a particle with the reduced mass µ̂ is moving
with velocity v. In this case we imagine the nucleus B to be at rest and
the particle A is approaching with velocity v.

We have deferred the full calculation of the reaction rate between A and
B nuclei in a plasma using the cross-section to problem 4. In order to be
able to do that calculation, we need to recall an expression which we have
seen before. In the lectures on electromagnetic radiation we learned that
the number density of particles with velocity between v and v + dv in an
ideal gas of temperature T with molecules of mass m can be written as

n(v)dv = n
( m

2πkT

)3/2

e−
1
2

mv2

kT 4πv2dv. (3)
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You will use this in problem 4 when you need to multiply with the number
of A and B nuclei in the gas.

The result you will find in problem 4 is the energy produced per kilogram
of gas per second from nuclear reactions between A and B nuclei, εAB.
You will show that it is given by

εAB =
ε0

ρ

(
2

kT

)3/2
nAnB√

µ̂π

∫ ∞

0

dEEe−E/kT σ(E), (4)

where ε0 is the energy released in each nuclear reaction between an A and
a B nucleus, ρ is the total density of the gas and nA and nB are number
densities of A and B nuclei. We will not do the integral here but note that
the solution can be Taylor expanded around given temperatures T as

εAB = ε0,reacXAXBραT β,

where ρ is the density, XA and XB are the mass fractions of the two nuclei

XA =
nAmA

nm
=

total mass in type A nuclei

total mass
,

and α and β depend on the temperature T around which the expansion
is made.

Here, ε0,reac, α and β will depend on the nuclear reaction (calculated from
the integral 4). The constant ε0,reac includes the energy per reaction ε0

for the given reaction as well as several other constants. If we have ε0,reac,
α and β for different nuclear reactions, we can use this expression to find
the nuclear reactions which are important for a given temperature T in a
stellar core.

The energy release per mass per time, ε, can be written as luminosity per
mass

dL

dm
= ε

The luminosity at a shell at a distance r from the center of a star can
therefore be written as

dL(r)

dr
= 4πr2ρ(r)ε(r), (5)

which is another of the equations used together with the equation of hydro-
static equilibrium in the stellar model building described in the exercises
of lecture 13–14.

5 Stellar nuclear reactions

For main sequence stars the most important fusion reaction fuses four 1
1H

atoms to 4
2He. When writing nuclei, A

ZX, A is the total number of nucleons
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(protons and neutrons), Z is the total number of protons and X is the
chemical symbol. There are mainly two chains of reaction responsible for
this process. One is the pp-chain,

1
1H +1

1 H → 2
1H +0

0 ē +0
0 ν

2
1H +1

1 H → 3
2He +0

0 γ
3
2He +3

2 He → 4
2He + 2 ×1

1 H

Here 0
0ν is the electron associated neutrino, 0

0γ is a photon and the bar
represents antiparticles: 0

0ē is the antiparticle of the electron called the
positron. This is the pp-I chain, the most important chain reactions in
the solar core. There are also other branches of the pp-chain (with the
first two reactions equal) but these are less frequent. The pp-chain is
most effective for temperatures around 15 millions Kelvin for which we
can write the reaction rate for the full pp-chain as

εpp ≈ ε0,ppX
2
HρT 4

6 ,

where T = 106T6 with T6 being the temperature in millions of Kelvin. This
expression is valid for temperatures close to T6 = 15. For this reaction
ε0,pp = 1.08 × 10−12 Wm3/kg2. The efficiency of the pp-chain is 0.007,
that is only 0.7% of the mass in each reaction is converted to energy.

The other reaction converting four 1
1H to 4

2He is the CNO-cycle,

12
6 C +1

1 H → 13
7 N +0

0 γ
13
7 N → 13

6 C +0
0 ē +0

0 ν
13
6 C +1

1 H → 14
7 N +0

0 γ
14
7 N +1

1 H → 15
8 O +0

0 γ
15
8 O → 15

7 N +0
0 ē +0

0 ν
15
7 N +1

1 H → 12
6 C +4

2 He

with a total reaction rate

εCNO = ε0,CNOXHXCNOρT 20
6 ,

where ε0,CNO = 8.24 × 10−31 Wm3/kg2 and

XCNO =
MCNO

M

is the total mass fraction in C, N and O. These three elements are only
catalysts in the reaction, the number of C, N and O molecules do not
change in the reaction. This expression is valid for T6 ≈ 15. We see that
when the temperature increases a little, the CNO cycle becomes much
more effective because of the power 20 in temperature. In the exercises
you will find how much. Thus, the CNO cycle is very sensitive to the
temperature. Small changes in the temperature may have large influences
on the energy production rate by the CNO cycle.
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For stars with an even hotter core, also 4
2He may fuse to heavier elements.

In the triple-alpha process three 4
2He nuclei are fused to form 12

6 C.

4
2He + 4

2He → 8
4Be +0

0 γ

8
4Be + 4

2He → 12
6 C∗ +0

0 γ

Here the reaction rate can be written as

ε3α = ε0,3αρ2X3
HeT

41
8 .

Here T = 108T8, T8 is the temperature in hundred millions of Kelvin and
ε0,3α = 3.86 × 10−18 Wm6/kg3. This expression is valid near T8 = 1. We
see an extreme temperature dependence. When the temperature is high
enough, this process will produce much more than the other processes.

For higher temperatures, even heavier elements will be produced for in-
stance with the reactions

4
2He + 12

6 C → 16
8 O +0

0 γ (6)

12
6 C + 12

6 C → 24
12Mg +0

0 γ (7)

There is a limit to which nuclear reactions can actually take place: The
mass of the resulting nucleus must be lower than the total mass of the
nuclei being fused. Only in this way energy is produced. This is not
always the case. For instance the reactions

12
6 C + 12

6 C → 16
8 O + 24

2He (8)

and
16
8 O + 16

8 O → 24
12Mg + 24

2He (9)

require energy input, that is the total mass of the resulting nucleus is
larger than the total mass of the input nuclei. It is extremely difficult
to make such reactions happen: Only in extreme environments with very
high temperatures is the probability for such reactions large enough to
make the processes take place.

In figure 4 we show the mass per nucleon for the different elements. We
see that we have a minimum for 56

26Fe. This means that for lighter elements
(with less than 56 nucleons), the mass per nucleon decreases when com-
bining nuclei to form more heavier elements. Thus, for lighter elements,
energy is usually released in a fusion reaction (with some exceptions, see
equation 8 and 9). For elements heavier than iron however, the mass per
nucleus increases with increasing number of nucleons. Thus, energy input
is required in order to make nuclei combine to heavier nuclei. The latter
processes are very improbable and require very high temperatures.

We see that we can easily produce elements up to iron in stellar cores.
But the Earth and human beings consist of many elements much heavier
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Figure 4: Schematic diagram of mass per nucleon as a function of the
number of nucleons in the nucleus. Note that we are only illustrating
the general trends. There are for instance a few light elements for which
the mass per nucleon increases with increasing number of nucleons in the
nucleus.

than iron. How were these produced? In the Big Bang only hydrogen and
helium were produced so the heavier elements must have been created in
nuclear reactions at a later stage in the history of the universe. We need
situations were huge amounts of energy are available to produce these
elements. The only place we know about where such high temperatures
can be reached are supernova explosions. We will come back to this later.

6 The solar neutrino problem

If you look back at the chain reactions above you will see that neutrinos
are produced in the pp-chain and the CNO cycle. We have learned in
earlier lectures that neutrinos are particles which hardly react with matter.
Unlike the photons which are continuously scattered on charged particles
on they way from the core to the stellar surface, the neutrinos can travel
directly from the core of the Sun to the Earth without being scattered
even once. Thus, the neutrinos carry important information about the
solar core, information which would have otherwise been impossible to
obtain without being at the solar core. Using the chain reactions above
combined with the theoretical reaction rates, we can calculate the number
of neutrinos with a given energy we should observe here at Earth. This
would be an excellent test of the theories for the composition of the stellar
interiors as well as of our understanding of the nuclear reactions in the
stellar cores. The procedure is as follows
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Figure 5: Info-figure: The protonproton (pp) chain reaction, The carbon-
nitrogen-oxygen (CNO) cycle (the helium nucleus is released at the top-left
step) and the triple-alpha process.(Figure:Wikipedia)
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1. Stellar model building: Solve the coupled set of equations consisting
of the equation of hydrostatic equilibrium, equation 5 as well as
several equations from thermodynamics describing the transport of
energy within the Sun. The solutions to these equations will give
you the density ρ(r) and temperature T (r) of the Sun as a function
of distance r from the center.

2. The temperature T (r) at a given distance r combined with the above
expressions for stellar reaction rates gives the number of neutrinos
produced in the different kinds of chain reactions and what energies
E these neutrinos should have.

3. Measure the flux of neutrinos for different energy ranges E that we
receive on Earth and compare to theoretical predictions.

4. If there is agreement, it means we have obtained the correct model
for the Sun. If the agreement is not satisfactory, we need to go back
to the first step and make the stellar model building with different
assumptions and different parameters.

For many years, there was a strong disagreement between the neutrino flux
observed at Earth and the solar models. The observed number of neutrinos
was much lower than predicted. Now the discrepancy is resolved and the
solution led to an important discovery in elementary particle physics: It
was discovered that the neutrinos have mass. It was previously thought
that neutrions were massless like the photons. Elementary particle physics
predicted that if the neutrinos have mass, they may oscillate between the
three different types of neutrino. If neutrinos have mass, then an electron
neutrino could spontaneously convert itself into a muon or tau neutrino.
The first neutrino experiments were only able to detect electron neutrinos.
The reason they didn’t detect enough solar neutrinos was that they had
converted themselves to different types of neutrinos on the way from the
solar core to the Earth. Today neutrino detectors may also detect other
kinds of neutrino and the observed flux is in much better agreement with
the models. But it does not mean that the solar interior and solar nuclear
reactions are completely understood. Modern neutrino detectors are now
used to measure the flux of different kinds of neutrinos in different energy
ranges in order to understand better the processes being the source of
energy in the Sun as well as other stars.

But the neutrinos hardly react with matter, how are they detected? This
is not an easy task and a very small fractions of all the neutrinos passing
through the Earth are detected. One kind of neutrino detector consists of
a tank of cleaning fluid C2Cl4, by the reaction

37
17Cl + 0

0ν → 37
18Ar + 0

−1e.

The argon produced is chemically separated from the system. Left to itself
the argon can react with an electron (in this case with its own inner shell
electron) by the converse process

37
18Ar + 0

−1e → 37
17Cl + 0

0ν.
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The chlorine atom is in an excited electronic state which will sponta-
neously decay with the emission of a photon. The detection of such pho-
tons by a photomultiplier then is an indirect measurement of the solar
neutrino flux.

7 Problems

Problem 1 (2–3 hours)

We will show that the mean kinetic energy of a particle in the gas is

K =
3

2
kT.

In statistics, if x is a stochastic random variable and we want to find the
mean value of a function f(x) of this random variable, we use the formula
for the mean

< f(x) >=

∫
dxf(x)P (x),

where P (x) is the probability distribution function describing the proba-
bility of finding a certain value for the random variable x. The probability
distribution needs to be normalized such that∫

dxP (x) = 1.

All integrals over x are over all possible values of x.

Let’s translate the last sentences into a more understandable language:
physics. Our random variable x is simply the velocity v of particles in a
gas. Why random? Because if you take a gas and choose randomly one
particle in the gas, you do not know which value you will find for v, it
is random. Thermodynamics gives us the probability distribution P (x) of
velocities. This probability distribution tells us the probability that our
choosen gas particle has a given velocity v. In an ideal gas, the probability
distribution is given by the Maxwell-Boltzmann distribution function in
equation 3. Finally, the function f(x) is any function of the velocity, of
which we want the mean value. This could for instance be the kinetic
energy K(v) = (1/2)mv2. This is a function of the random variable v
and we would indeed like to find the mean value of this function, that
is, the mean kinetic energy of a particle in the gas. This mean kinetic
energy would be the energy we would find if we measured the kinetic
energy of a large number of particles in the gas and took the mean. It
is that simple. So now we substitute x with v, f(x) with K(v) and the
probability distribution P (x) with n(v). There is however one caveat:
Above we mentioned that P (x) needs to be normalized. The form of the
Maxwell-Boltzmann distribution in equation 3 is not normalized. We call
the normalized distribution nnorm(v). Then we have

< K >=

∫
dvK(v)nnorm(v).
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In the following you will need the following two integrals∫ ∞

0

dxe−xx1/2 =

√
π

2

and ∫ ∞

0

dxe−xx3/2 =
3
√

π

4
.

1. First we need to find nnorm(v). We write

nnorm(v) =
1

N
n(v).

Use the normalization integral for P (x) above to find N .

2. Now use the normalized distribution function to find the mean ki-
netic energy of a particle in an ideal gas.

3. Now we will check our result numerically: Note that the Maxwell-
Boltzmann distribution function in equation 3 is the probability of
finding a particle with absolute value v of the velocity. We now
want to simulate gas particles using this distribution, but in order
to create a realistic simulation we also need to take account the
direction of the particles. The corresponding Maxwell-Boltzmann
distribution function for the probability of finding a gas particle
with velocity vector ~v can be written like this:

n(~v) =
( m

2πkT

)3/2

e−
1
2

mv2

kT ,

which is the expression we need to use to simulate particles (in a
later lecture you will learn how to go from this exression for n(~v) to
the expression for n(v) in equation 3). Note that this distribution is
already normalized. Looking at this expression, you see that this is
a Gaussian distribution function which can be written on the form

P (~v) =
1

(2πσ2)3/2
e−(v2

x+v2
y+v2

z)/(2σ2)

(a) Comparing with the Maxwell-Boltzmann distribution for ~v,
what is σ here?

(b) In Python there is a function random.gauss(mean,sigma) to
produce random numbers with a Gaussian probability distri-
bution. The vx, vy and vz components of the velocity of gas
particles are thus all distributed randomly with mean value 0
and standard deviation given by the σ which you just found.
Now you will simulate 10000 gas particles with a temperature
T = 6000 K (like on the solar surface), assuming that the
atoms in the gas are hydrogen atoms. Now produce the ran-
dom velocity components vx, vy and vz of these particles using
the random.gauss function in Python. Now you have an array
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which has the velocity in each direction for all your 10000 par-
ticles representing what you would really find if you had a look
at the velocities of 10000 particles in a gas with this tempera-
ture. Now compute the kinetic energy for each of the particles
and take the mean value over all your particles. Compare the
number you get to what you obtain with the analytic expres-
sion you found above. Does it fit? If it does not fit precisely,
and if you have the computer power to do it, repeat the code
but now with 100000 particles. Does it fit better now? In most
real situatuions, an analytic expression cannot be found and
simulations like these have to be made.

Problem 2 (60–90 min.)

One of the solar standard models predict the following numbers for the
solar core: ρ = 1.5 × 105 kgm−3, T = 1.57 × 107 K, XH = 0.33, XHe =
0.65 and XCNO = 0.01. We will assume that the expressions for energy
production per kilogram given in the text are valid at the core temperature
of the Sun. We will make this approximation even for the expression for
the triple-alpha reaction which is supposed to be correct only for higher
temperatures.

1. Calculate the total energy produced per kilogram in the Sun by the
pp-chain, CNO-cycle and the triple-alpha process.

2. Find the ratio between the energy production of the pp-chain and the
CNO-cycle and between the pp-chain and the triple-alpha process.
The energy produced by the CNO cycle is only about 1% of the total
energy production of the Sun. If you got a very different number in
your ratio between the pp-chain and the CNO-cycle, can you find
an explanation for this difference? What would you need to change
in order to obtain a more correct answer?

3. Now repeat the previous question using a mean core temperature
of about T = 13 × 106 K. Use this temperature in the rest of this
exercise.

4. At which temperature T does the CNO cycle start to dominate?

5. Assume for a moment that only the pp-chain is responsible for the
total energy production in the Sun. Assume that all the energy
production in the Sun takes place wihin a radius R < RE inside
the solar core.Assume also that the density, temperature and mass
fractions of the elements are constant within the radius RE. So all
the energy produced by the Sun is produced in a sphere of radius
RE in the center of the solar core. Use the above numbers and the
solar luminosity L� = 3.8 × 1026 W to find the size of this radius
RE within which all the energy production takes place. Express the
result in solar radii R� ≈ 7×108 m. The solar core extends to about
0.2R�. How well did your estimate of RE agree with the radius of
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the solar core?

6. If the CNO-cycle alone had been responsible for the total energy
production of the Sun, what would the radius RE had been? (again
express the result in solar radii)

Problem 3 (30 min.–1 hour)

1. Go through all the nuclear reactions in the pp-chain and CNO cycle.
For each line in the chain, check that total charge and total lepton
number is conserved. (there might be some printing errors here, if
you spot one where is it?)

2. After having checked all these reactions you should have gained some
intuition about these reactions and the principles behind them. So
much that you should be able to guess the missing numbers and
particles in the following reactions

27
14Si → 27

? Al + e+ + ?
27
? Al + 1

1H → 24
12Mg + ?

2?
35
17Cl + 1

1H → 36
18Ar + ?

Problem 4 (30–60 min.)

Before you can do this exercise, you need to read through section 4 again.
In that section, we were considering a gas with a total number density of
particles n per volume, a number density nA per volume of A nuclei and
a number density nB per volume of B nuclei. We will now calculate the
rate of reaction between A and B nuclei in the gas.

1. First we will try to find how many A nuclei with a given energy E will
react with one B nucleus per time interval ∆t. The answer is simple:
All the A particles with energy E which are in such a distance from
B that they will hit the disk with cross section σ(E) around nucleus
B within the time interval ∆t (again, this is an imaginary situation:
only one nucleus A can really react with B, the numbers we obtain
are in reality probabilities). In figure 3 we illustrate the situation.
Let nA(E) be the number density of A nuclei with energy E such that
nA(E)dE is the number density of A nuclei with energies between E
and E + dE. Then, show that the total number of nuclear reactions
per nucleus B from A nuclei with energies in the interval E to E+dE
is given by

dNA(E) = v(E) dt σ(E)nA(E) dE. (10)

2. Show that the velocity of an A-nuclei can be written as

v(E) =

√
2E

µ̂
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(What is µ here?)

3. Use equation 3 to show that the number of A nuclei with energies
between E and E + dE is given by

nA(E)dE =
2nA√

π(kT )3/2
E1/2e−

E
kT dE.

4. Show now that the total reaction rate per B nucleus, i.e. the number
of A nuclei reacting with each B nucleus (independent of the energy
of the B nucleus, remember that the B nucleus is at rest) is given by

dNA(E)

dt
=

1√
πµ̂

(
2

kT
)3/2σ(E)nAEe−

E
kT dE,

5. To obtain the total reaction rate rAB between A and B nuclei having
the number of reactions per B nucleus, we thus need to multiply with
the total density of B nuclei nB and integrate over all energies E.
Show that the reaction rate, the total number of nuclear reactions
per unit of volume per unit of time, is given by

rAB =
dN

dt
=

(
2

kT

)3/2
nAnB√

µ̂π

∫ ∞

0

dEEe−E/ktσ(E)

6. Use this expression to find the units of the reaction rate rAB to check
if you find the units that you would expect for rAB being the total
number of nuclear reactions per unit of volume per unit of time.

7. It is common to express the reaction rate using εAB which is the
energy released per kilogram of gas per second. Assume that the
energy released in each reaction between an A nucleus and a B nu-
cleus is given by ε0 (which is not the vacuum permittivity ε0) and
show that εAB can be written in terms of rAB as

εAB =
ε0

ρ
rAB.

(Why does the density enter here?)
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AST1100 Lecture Notes

20: Stellar evolution: The giant stage

1 Energy transport in stars and the life time

on the main sequence

How long does the star remain on the main sequence? It will depend on
the available hydrogen in the core. Note that as hydrogen is converted
to helium the mean molecular weight µ (see lecture 13–14) increases. We
remember that the pressure in an ideal gas can be written as

P =
ρkT

µmH

.

Thus as µ increases, P decreases provided ρ and T remain approximately
constant. The result is that the hydrostatic equilibrium is lost. The
battle between the gravitational forces and the pressure forces is won
by gravitation and the stellar core starts contracting. The result of the
contracting core is that the core density and temperature rise. At higher
core temperatures, the nuclear reactions which are more effective at higher
temperatures start to be more important. We will now make an estimate
of how long time it takes until the hydrogen in the core is exhausted. At
this point, the star leaves the main sequence and starts the transition to
the giant stage.

Before continuing the discussion on energy production in the core we need
to have a quick look at how the energy is transported from the core to
the surface. Clearly the photons produced in the nuclear reactions in
the core do not stream directly from the core and to the surface. The
total luminosity that we observe does not come directly from the nuclear
reactions in the core. The photons produced in the nuclear reactions
scatter on the nuclei and electrons in the core transferring the energy to
the particles in the core. Thus, the high temperature of the stellar core is
a result of the energetic photons produced in the nuclear reactions. The
high temperature plasma in the core emits thermal radiation. The photons
resulting from this thermal radiation constitutes a dense photon gas in the
core of the star. How is the energy, that is, the heat of the plasma or the
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photons in the photon gas, transported to the stellar surface? There are
three possible ways to transport energy in a medium:

• By radiation: Photons from the photon gas traveling outwards. The
photons cannot travel directly from the core, but will be continu-
ously scattered in many different directions by collisions with other
particles. After a large number of scatterings and direction changes
it will eventually reach the surface and escape.

• By convection: Large masses of the hot gas may stream outwards
while the cooler gas falls inwards. In this way, the heat and thereby
the energy is transfered outwards. Convection is a much more effi-
cient way of energy transport than radiation.

• By conduction: Heat is transfered directly outwards by particle col-
lisions.

In stars, mostly the two former mechanisms for energy transport are at
play. In solar mass stars, energy is transported from the core by radiation
until a distance of about r = 0.7R� where convection starts to be the
most important mechanism for energy transport out to the surface.

We will now make a very crude estimate of how long a star remains on the
main sequence. In order to do this properly it is necessary to do stellar
model building, i.e. solve the coupled set of equations of hydrostatic equi-
librium, the equations of energy production and the equations of energy
transport. This gives a model of the star in terms of density and tempera-
ture as a function of distance from the center. From this model, the proper
life time of the star can be calculated. It turns out that the estimates and
relations that we now will deduce using some very rough approximations
give results close to the results obtained using the full machinery of stellar
model building.

The outline of the method is the following: Find an expression for the
luminosity of the star. We know that luminosity is energy radiated away
per unit of time. If we assume how much energy the star has available
to radiate away during its life time, we can divide this energy by the
luminosity to find the life time (assuming constant luminosity which is a
good assumption during the main sequence phase).

We will again consider the photon gas in the stellar core. You will in later
courses in thermodynamics show that the energy density, i.e. energy per
volume, of a photon gas goes as ρE ∝ T 4 (actually ρE = aT 4 where a is the
radiation constant that we encountered in lecture 13–14 for the pressure
of a photon gas P = 1/3aT 4). The question is how long time it will take
for the photos in the photon gas to reach the surface of the star. We will
now assume that the only mechanism for energy transport is by radiation.
A photon which starts out in the core will be scattered on particles and
continuously change directions until it reaches the surface of the star (see
figure 2). We assume that the photon travels a mean free path ` between

each collision. After being scattered N times, the position ~d of the photon
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Figure 1: Info-figure: Stars produce energy by fusion in their deep interior
because only there are the pressures and temperatures high enough to
sustain thermonuclear reactions. However, most of the luminous energy
of stars is radiated from the thin region at the surface that we call the
photosphere. The two most important ways of transporting energy from
the core to the surface in main sequence stars are by radiation and by
convection. A low mass main sequence star (middle) will have convection
in its outer layers and a radiation zone (yellow area) in the center, like the
Sun. If the star is really low mass (right) it will have convection all the way
in. A high mass star (left) will have convection only in its core.(Figure:
B. Boroson)

Figure 2: Energy transport by radiation: random walk of the photons
from the core of the star to the surface.
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Figure 3: Random walk from the core. The position after N scatterings
~li is ~d.

(see figure 3) is given by

~d =
N∑

i=1

~li,

where ~li is the displacement vector between each scattering i (see again
figure 3). The total length ∆r of the vector d is the total distance the
photon has moved from the center. It is given by (check!)

∆r2 = ~d · ~d =
∑
i,j

~li ·~lj = N`2 + `2
∑
i6=j

cos θij,

where θij is the angle between two vectors ~li and ~lj. The directions of the
scatterings are random, so cos θij will have values between -1 and 1. After
many scatterings, the mean value of this term will approach zero and we
have

∆r =
√

N`,

or writing this in terms on number of scatterings N to reach the surface
we thus have N = R2/`2 where R is the radius of the star (check!).

The time ∆t for a photon to reach the surface is then (note that the total
distance traveled by the photon is N`)

∆t =
N`

c
=

`

c

R2

`2
=

R2

`c
.

If we assume that within a radius r of the star, the temperature T and
energy density ρE of the photon gas is constant, the total energy content
of the photon gas within radius r is

E =
4

3
πr3ρE ∝ r3T 4,
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where we used that ρE ∝ T 4. We will now use a very rough model of the
star: We assume the density and temperature of the star to be constant
everywhere in the star. Then the energy content of the photon gas in
the whole star is given by E ∝ R3T 4. If we assume that this energy is
released within the time ∆t it takes for the photons in the core to reach
the surface, then the luminosity of the star can be written as

L ∝ E

∆t
∝ R3T 4

R2/`
∝ RT 4`. (1)

The mean free path ` depends on the density of electrons and the different
nuclei in the core. If we assume that photons are only scattered on elec-
trons, it can be shown that the mean free path ` ∝ 1/ρ which does seem
reasonable: The higher the density the lower the mean free path between
each scattering. Since we assume constant density we have ρ ∝ M/R3.
Inserting this in equation 1 we have

L ∝ RT 4` ∝ RT 4

ρ
∝ R4T 4

M
. (2)

Finally we will use the equation of hydrostatic equilibrium

dP

dr
= −ρg.

If we assume that the pressure can be written as P ∝ rn where n is
unknown then

dP

dr
= nrn−1 =

nrn

r
=

nP

r
∝ P

r
.

The equation of hydrostatic equilibrium then yields

P

R
∝ ρg ∝ M

R3

M

R2
∝ M2

R5
,

or P ∝ M2/R4. We remember from lecture 13–14 than for an ideal gas
P ∝ ρT . Inserting this in the previous equation gives

T ∝ M

R
.

Inserting this in equation 2 we get

L ∝ R4

M

(
M

R

)4

∝ M3. (3)

The luminosity is proportional to the mass of the star to the third power.
A more exact calculation would have shown that

L ∝ Mβ,
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where β is usually between 3 and 4 depending on the exact details of the
star. It turns out that most low or medium mass stars have β ≈ 4. This
is also supported by observations. Therefore we will in the following use
L ∝ M4. Having the luminosity of the star, we can easily find the life
time. Assume that a fraction p of the mass of the star is converted to
energy. Then then total energy radiated away during the lifetime of the
star is given by

E = pMc2.

If we assume constant luminosity during the lifetime we have

L =
pMc2

tlife
∝ M4,

giving

tlife ∝
1

M3
.

This can be the total life time of the star, or just the life time on the main
sequence (in fact, for most stars the time on the main sequence is so much
longer than other stages in a star’s life so the time on the main sequence
is roughly the same as the life time of the star). If we take p to be the
fraction of mass converted to energy during the main sequence, then this
is the expression for the time the star spends on the main sequence. We
see that the life time of a star is strongly dependent on the mass of the
star. The Sun is expected to live for about 10 × 109 years. A star with
half the mass of the Sun will live 8 times longer (which is much longer
than the age of the universe). A star with two times the mass of the Sun
will live only 1/8 or roughly 109 years. The most massive stars only live
for a few million years. We see from equation 3 that this can be explained
by the fact that massive stars are much more luminous than less massive
stars and therefore burn their fuel much faster. A star with two times the
mass of the Sun will burn 16 times (equation 3) as much ’fuel’ per time
as the Sun, but it only has twice as much ’fuel’. It will therefore die much
younger.

As the last expression is just a proportionality, we need to find the constant
of proportionality, that is, we need to know the life time and mass of one
star in order to use it for other stars. We know these numbers for the
Sun and we will now use approximations to calculate this number. One
can show that a star will leave the main sequence when about 10% of
its hydrogen has been converted to helium. We discussed in the previous
lecture that the efficiency of the pp-chain is 0.7%. So the total energy that
will be produced of the Sun during its lifetime is therefore 0.1×Mc2×0.007.
Assuming that the solar luminosity 3.7 × 1026 W is constant during the
time on the main sequence we have

tmainsequence
� =

0.1 × 2 × 1030 kg × (3 × 108 m/s)2 × 0.007

3.7 × 1026 W
≈ 1010 years.
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We will now try to find a way to estimate the mass of a star. Remember
that in the lectures on extrasolar planets, we needed to know the mass of
the star by independent measurements in order to be able to estimate the
mass of a planet orbiting it. In the above approximation we considered
a star with constant density and temperature. The conditions we used
are normally valid only for the core of the star. Thus, the approximations
we made are more correct in the core of the star. We found that the
temperature T ∝ M/R. For main sequence stars, the core temperature is
reasonably constant, there is not a large difference in core temperatures
for different main sequence stars. Using this assumption we can write

Tc ∝
M

R
= constant.

We can write this as R ∝ M . Now, we know that the luminosity of a star
can be written in terms of the effective temperature as

L = 4πR2σT 4
eff ,

where 4πR2 is the area of the surface and F = σT 4
eff is the flux at the

surface. Using R ∝ M and L ∝ M4 this gives

L ∝ M4 ∝ R2T 4
eff ∝ T 4

effM2,

so M4 ∝ T 4
effM2 giving

M ∝ T 2
eff (4)

and we have obtained a way to find the mass of a star from its temperature.
In the exercises you will use this expression to find the temperature of stars
with different masses.

2 From the main sequence to the giant stage

We will now follow a star during the transition from the main sequence
to the giant stage. The exact sequence of events will be slightly different
depending on the mass of the star. Here we will only discuss the general
features and discuss a few main differences between low and high mass
stars. In figure 4 we can follow the evolutionary path of the star in the
HR diagram. The theories for stellar evolution are developed using com-
puter models of stars obtained by solving the equations for stellar model
building numerically. The chain of arguments that we will use below to de-
scribe stellar evolution are obtained by studying the outcome of computer
simulations.

When the hydrogen in the core has been exhausted, the forces of pressure
are not any longer strong enough to sustain the forces of gravity. The
hydrostatic equilibrium is lost and the core starts contracting. During
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Figure 4: HR-diagram of the evolution of a star from the main sequence
to the giant stage.

Figure 5: The structure of a subgiant and red giant. The core consists
mainly of helium, but the core temperature is not high enough for helium
burning. Hydrogen is burning to helium in a shell around the core. For
red giants, convection transports material all the way from the core to
the surface and the material is mixed (in the figure there is only hydrogen
in the outer parts, for red giants the mixing due to convection will also
transfer other elements all the way to the surface). The relative sizes of
the shells are not to scale, this will depend on the exact evolutionary stage.
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the core contraction, the temperature in and around the core increases.
The temperature in the core is still not high enough to ’burn’ helium (all
energy production is by nuclear fusion, not by ’burning’ in the classical
sense but it is common practice to use the term ’burning’ anyway), but
the temperature in a shell around the core now reaches temperatures high
enough to start hydrogen burning outside the core. The structure of the
star is illustrated in figure 5. Because of the increased outward pressure
due to hydrogen burning in the shell, the radius of the star starts increasing
significantly. The star has become a sub giant of luminosity class IV (see
the lecture on the HR diagram and luminosity classes). In figure 4 the star
has left the main sequence and is now on the sub giant branch between
point 1 and 2. The luminosity has been increasing slightly because the
energy produced in the shell is higher than the energy previously produced
in the core. But because of the increasing radius of the star, the surface
temperature is dropping. Thus the star moves to the right and slightly
upwards in the HR diagram.

When reaching point 2 in the HR-diagram, the radius of the star has
been increasing so much that the surface temperature is close to 2500 K
which is a lower possible limit. When reaching this limit, the dominant
mechanism of energy transport in the star changes from being radiation
to convection. Convection is much more efficient, the energy is released
at a much larger rate and the luminosity increases rapidly. The star has
now become a red giant. At the red giant stage, convection takes place all
the way from the core to the surface. Material from the core is moved all
the way to the surface. This allows another test of the theories of stellar
evolution. By observing the elements on the surface of a red giant we also
know the composition of elements in the core. The star is now on the red
giant branch in the HR-diagram (figure 4). The structure of the star still
resembles that of figure 5. The radius is between 10 and 100 times the
original radius at the main sequence and the star has reached luminosity
class III.

The next step in the evolution depends on the mass of the star. For
stars more massive than ∼ 2M�, the temperature in the core (which is
still contracting) will eventually reach temperatures high enough to start
the triple-alpha process burning helium to carbon as well as other chains
burning helium to oxygen. In low mass stars, something weird happens
before the onset of helium burning. As the core is contracting the density
becomes so high that a quantum mechanical effect sets in: there is no
more space in the core for more electrons. Quantum physics sets an upper
limit on the number of electrons within a certain volume with a certain
momentum. This is called electron degeneracy. The core has become elec-
tron degenerate. In the next lecture we will discuss this effect in detail.
At the moment all we need to know is that an electron degenerate core
will have a new type of pressure: degeneration pressure. The degeneration
pressure is now the outward force which battles the inward gravitational
force in the equation of hydrostatic equilibrium. The degeneration pres-
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Figure 6: Info-figure: The size of the current Sun compared to its esti-
mated size during its red giant phase in the future. The outer atmosphere
of a red giant is inflated and tenuous, making the radius immense and
the surface temperature low. Prominent bright red giants in the night sky
include Aldebaran, Arcturus, and Mira, while the even larger Antares and
Betelgeuse are red supergiants. (Figure: Wikipedia)
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sure does not depend on temperature. Thus, even when the temperature
of the core increases significantly, the core does not expand. The degener-
ate core is close to isothermal and when the temperature is high enough
to start helium burning, this happens everywhere in the core at the same
time. An enormous amount of energy is released in a very short time
causing an explosive onset of the helium burning phase. This is called the
helium flash. After a few seconds, a large part of the helium in the core
has already been burned. The huge amounts of energy released breaks the
electron degeneracy in the core and the gas starts to behave normally, i.e.
the pressure is again dependent on the temperature allowing the core to
expand. The onset of helium burning (which includes the helium flash for
low mass stars and a less violent transition for high mass stars) is marked
by 3 in figure 4.

The final result of the onset of helium burning is therefore the same for
both low and high mass stars: The core will finally expand, pushing the
hydrogen burning shells outward to larger radii where the gas will cool
and the hydrogen burning will therefore cease in large parts of the shell.
The energy produced in the helium burning is not enough to substitute
the energy production in the shell and the total luminosity of the star will
decrease. This is the case also for stars which undergo a helium flash.
This is seen in the transition from 3 to 4 in figure 4. The star has now
entered the horizontal branch. This stage is in a way similar to the main
sequence: This is where the star burns its helium to carbon and oxygen in
the core. Hydrogen burning is still taking place in parts of the shell. The
structure of the star is shown in figure 7. Horizontal branch giants are
called so because, as we will discuss now, they will move back and forth
along a horizontal branch.

After the rapid expansion of the star after the onset of helium burning,
the star starts contracting again in order to reach hydrostatic equilibrium.
The result is an increasing effective temperature and the star moves to the
left along the horizontal branch. After a while on the horizontal branch,
the mean molecular weight in the core has increased so much that the
forces of pressure in the core are lower than the gravitational forces and
the core starts contracting. The temperature of the core increases and
the energy released in this process makes the star expand: The effective
temperature of the surface is decreasing and the star is moving to the
right along the horizontal branch. At this point the helium in the core is
exhausted and nuclear energy production ceases. The following scenario
resemble the scenario taking place when the hydrogen was exhausted: The
core which now mainly consists of carbon and oxygen starts to contract
(due to the lack of pressure to sustain the gravitational forces after the
energy production ceased). The core contraction heats a shell around the
core sufficiently for the ignition of helium burning. Energy is now produced
in a helium burning as well as hydrogen burning shell around the core.
The radius of the star increases because of the increased pressure. Again
we reach a stage of strong convective energy transport which (exactly as
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Figure 7: A horizontal branch giant. Helium is burning to carbon and
oxygen in the core. Hydrogen is burning to helium in a shell around the
core. The relative sizes of the shells are not to scale, this will depend on
the exact evolutionary stage.

on the red giant branch) rises the luminosity. The star now moves to the
asymptotic giant branch becoming a bright giant of luminosity class II or
even a super giant of luminosity class I. The star now has a radius of up
to 1000 times the original radius. The structure of the star is shown in
figure 8.

Most stars follow an evolution similar to this. The stars with very high
mass (more than ∼ 20M�) do not have a significant convective phase
and do therefore not change their luminosity much during their evolution.
They will mainly move left and right in the HR-diagram.

Open stellar clusters can be used to test the theories of stellar evolution.
An open cluster is a collection of stars which were born roughly at the
same time from the same cloud of gas. Observing different open clusters
with different ages, we can obtain HR diagrams from different epochs of
stellar evolution. We can use observed diagrams to compare with the
predicted diagrams obtained using the above arguments. In figure 9 we
see a schematic example of HR diagrams taken at different epochs (from
clusters with different ages). We see that the most massive stars start to
leave the main sequence earlier: This is because the life time of stars is
proportional to t ∝ 1/M3. The most massive stars exhaust their hydrogen
much earlier than less massive stars. As discussed above, the most massive
stars do not have a phase with strong convection and do therefore not move
vertically up and down but mostly left and right in the diagram. For this
reason we do not see the red giant branch and the asymptotic branch
for these stars. Only in the HR diagram of the oldest cluster has the
intermediate mass stars started to leave the main sequence. For these stars
we now clearly see all the different branches. Comparing such theoretical
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Figure 8: A bright/super giant. The core consists mainly of carbon and
oxygen but the temperature is not high enough for these elements to burn.
Around the core there is a shell where helium is fused to carbon and oxygen
and another shell where hydrogen is fused to helium. In the outer parts
the temperature is not high enough for fusion reactions to take place.

diagrams with diagrams for observed clusters has been one of the most
important way to test and understand theories of stellar evolution.

Having reached the asymptotic giant branch, the star has almost ended
its life cycle. The final stages will be discussed in more detail in the next
lectures. First we will look at a typical feature of giant stars: pulsations.

3 Stellar pulsations

Some giant stars have been observed to be pulsating. We have already
encountered one kind of pulsating stars: the Cepheids. The pulsating
stars have been found to be located in narrow vertical bands, so-called
instability strips, in the HR-diagram. The Cepehids for instance, are
located in a vertical band about 600 K wide around Teff ∼ 6500 K. The
pulsations start during the core contraction and expansions starting when
the star leaves the main sequence. They last only for a limited period
when the star passes through an instability strip in the HR diagram.
We remember that for Cepheids there is a relation between the pulsation
period and the luminosity of the star allowing us to determine the distance
to the star (see the lecture on the cosmic distance ladder). The period-
luminosity relation for Cepheids can be written in terms of luminosity
(instead of absolute magnitude) as

〈L〉 ∝ P 1.15, (5)
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Figure 9: Schematic HR diagrams of open clusters of different ages:

Upper left: A cluster still in the process of forming. The less massive
stars are still in the contracting phase and have not yet reached the main
sequence.
Upper right: A cluster with an age of about 107 years. The most massive
stars have started to leave the main sequence.
Lower left: A cluster of about 109 years. The low mass stars have now
reached the main sequence.
Lower right: A cluster of about 1010 years. The medium mass stars
have now started to leave the main sequence and we can clearly see the
different branches discussed in the text.
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where 〈L〉 is the mean luminosity and P is the pulsation period. We will
now see if we can deduce this relation using physics in the stellar interior.

The pulsations are due to huge density waves, sound waves, traveling
through the interior of the star. We can find an approximate expression
for the pulsation period of a star by considering the time it takes for a
sound wave to go from one end of the star to the other. We will for
simplicity consider a star with radius R and constant density ρ. The
pulsation period P is thus the time it takes for a sound wave to travel a
distance 2R. In thermodynamics you will learn that the sound speed (the
so-called adiabatic sound speed) at a given distance r from the center of
a star is given by

vs(r) =

√
γP (r)

ρ
,

where γ is a constant depending on the specific heat capacities for the
gas. We have assumed constant density and therefore only need to find
the pressure as a function of r. The equation of hydrostatic equilibrium
can give us the pressure. We have

dP

dr
= −gρ = −GM(r)

r2
ρ = −4

3
Gπrρ2.

Integrating this expression from the surface where P = 0 and r = R down
to a distance r we get

P (r) =
2

3
πGρ2(R2 − r2).

We now have the necessary expressions in order to find the pulsation
period of a Cepheid. At position r, the sound wave travels with velocity
vs(r). It takes time dt to travel a distance dr, so

dt =
dr

vs(r)
.

To find the pulsation period, we need to find the total time P it takes for
the sound wave to travel a distance 2R

P ≈ 2

∫ R

0

dr

vs(r)
≈ 2

∫ R

0

dr√
2
3
γπGρ(R2 − r2)

=
1√

2
3
γπGρ

[
− tan−1 r

√
R2 − r2

r2 − R2

]R

0

Taking the limits in this expression, we find

P ≈
√

3π

2γGρ
∝ 1

√
ρ
∝
(

R3/2

M1/2

)
.
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From equation 4 we see that M1/2 ∝ Teff but since Cepheids are located
along the instability strip in the HR-diagram their effective temperatures
are roughly constant. So we have

P ∝ R3/2.

The luminosity of a star can be written as as L = 4πR2σT 4
eff . Again we

consider Teff ≈ constant so L ∝ R2 or R ∝ L1/2. Inserting this into the
previous expression for the pulsation period we have

P ∝ L3/4,

or
L ∝ P 4/3 ∝ P 1.3.

Comparing to the observed period-luminosity relation (equation 5), this
agreement is excellent taking into account the huge simplifications we have
made. We have shown that by assuming the pulsations to be caused by
sounds waves in the stellar interiors, we obtain a period luminosity relation
for Cepheids similar to what we observe.
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4 Problems

Problem 1 (10–20 min.)

In the text there is a formula for estimating the effective temperature of
a star with a given mass (or estimating the mass of a star with a given
effective temperature).

1. Given the effective temperature (5780 K) and mass (M�) of the Sun,
find the effective temperature of a small star with M = 0.5M�, an
intermediate mass star M = 5M� and a high mass star M = 40M�.

2. The star Regulus in the constellation Leo is a blue main sequence
star. It is found to have a peak in the flux at a wavelength of about
λ = 240 nm. Give an estimate of its mass expressed in solar masses.

Problem 2 (30–60 min.)

In the text we derived that the luminosity of a low/intermediate mass star
is proportional to mass to the third power L ∝ M3. In this derivation you
used the ideal gas law. For high mass stars, the radiation pressure is more
important than the ideal gas pressure and the expression for radiation
pressure (you need to find it in the text) needs to be used instead of the
expression for the ideal gas pressure. Repeat the derivation for the mass-
luminosity relation using radiation pressure instead of ideal gas pressure
and show that for high mass stars L ∝ M . How is the relation between
the life time and the mass of a star for a high mass star compared to a
low mass star?

Problem 3 (30–60 min.)

Read carefully the description for the evolution of a star from the main
sequence to the giant stage. Take an A4-sheet. You are allowed to make
some simple drawings and write a maximum of 10 words on the sheet.
Make the drawings and words such that you can use it to be able to
tell someone how a star goes from the main sequence to the giant stage,
describing the logic of how the core contracts/expands and how the star
moves in the HR-diagram depending on temperature, means of energy
transport and nuclear reactions. Bring the sheet to the group and use it
(and nothing else) to tell the story of stellar evolution to another student,
then exchange your roles.

Problem 4 (10–20 min.)

Look at the HR-diagram for the oldest cluster in figure 9. Can you identify
the different branches of stellar evolution?
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Problem 5 (1–2 hours)

We will now study the phase when the hydrogen in the stellar core has
been depleted. The energy production in the core stops and the core starts
shrinking. The star reaches the sub giant branch and then the red giant
branch while the core keeps shrinking. The core will keep shrinking until
the temperature in the core is high enough for helium burning to start.
We will try to find out how much the core shrinks before this takes place.
For simplicity we will study a star with so high mass that the core does
not become degenerate before helium burning sets in. We will assume the
core density at the main sequence to be ρ = 1.7 × 105 kg/m3.

We imagine the stellar core as an ’independent’ sphere of mass MC , ra-
dius RC , pressure PC and temperature TC . We assume the density and
temperature to be the same everywhere in the core.

1. Use the equation of hydrostatic equilibrium to show that

PC ∝ M2
C

R4
C

.

This is done in the text, but try to find your own arguments before
looking it up.

2. Then combine this with the ideal gas law to show that

TC ∝ MC

RC

.

3. We assume that the core temperature of the star on the main se-
quence was TC = 18 × 106 K. Use the expressions for the nuclear
energy production rates from the previous lecture to find out whether
it was the pp-chain or the CNO cycle which dominated the energy
production in the star while it was on the main sequence. Assume
XH = 0.5 and XCNO = 0.01.

4. Now use the expressions for nuclear energy production to find at
which temperature T the energy production rate of the triple-alpha
process equals the energy production the star had on the main se-
quence (using the numbers in the previous question). To calculate
the energy production rate from the triple-alpha process you need
to find a reasonable number for XHe in the core at the onset of he-
lium burning. Give some arguments for how you find this number.
You also need a density ρ, but since the energy production rate is
so much more sensitive to the temperature than to the density you
can make the crude approximation that the core density is the same
as it was on the main sequence. Use the temperature you find here
as the criterion for the onset of helium burning (and therefore the
criterion for when the star moves to the horizontal branch in the
HR-diagram).
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5. Use the equations and numbers we have derived in this exercise to
find the radius RC of the core at the moment when the energy pro-
duction from helium fusion starts (has become significant). Express
the result in terms of solar radii R�. At the main sequence, the core
radius was RC = 0.2R�. You have now found how much the core
needs to contract in order to start helium fusion and therefore to
move down to the horizontal branch.

6. When you calculated the temperature for the onset of helium burn-
ing you made a very rough approximation: You used the core density
which the star had on the main sequence, whereas you should really
use the much higher density in the core when the core temperature
is high enough for helium burning. Now you have estimated the size
of the core radius when helium burning starts. Use this to obtain
the correct density when helium burning starts and go back to find a
more correct temperature for the onset of helium burning. Was the
error in your first crude estimate of the helium burning temperature
large relative to the temperature?
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AST1100 Lecture Notes

21: Quantum gases

In this lecture we will discuss a quantum phenomenon known as degener-
ation. A gas which is degenerate has very special properties. The helium
flash was caused by a degenerate stellar core. We will now see that the final
result of stellar evolution is also a star which consists of degenerate gas: a
white dwarf or a neutron star. What gives the degenerate gas its peculiar
properties is its equation of state. The equation of state is an equation
relating the pressure of the gas to its density and temperature. We have
already encountered two such equations of state, P = ρkT/(µmH) for an
ideal gas and P = (1/3)aT 4 for a photon gas (we will now use capital P
to denote pressure in order to distinguish it from the momentum p). We
will therefore start by studying how we can obtain an expression for the
pressure of a gas.

1 Pressure

To calculate the pressure of a gas we need to consider the force that
particles in a gas exert on a wall (real or imaginary). Pressure is defined
as the force per area on the wall P = F/A from the particles in the gas.
In figure 1 we see particles within a cylinder of length ∆x. The particles
collide with the wall at the right end of the cylinder. The surface area
of the part of the wall limiting the cylinder on the right end is A. We
will assume that the collisions are elastic. In elastic collisions the total
absolute value of the momentum of the particle is conserved.If we define
the x-direction as the direction towards the wall and the y-direction as
the direction along the wall (see again figure 1), then momentum py in
y-direction is always conserved since there is no force working in that
direction. For the absolute value of the momentum to be conserved, the
absolute value of the momentum px in the x-direction must be conserved.
This means that the momentum in the x-direction after the collision must
the −px where px is the momentum before the collision. This means simply
that the incoming angle equals the outgoing angle (see figure 2).

Before the collision, a particle has momentum (px, py). After the collision
the particle has momentum (−px, py). The total change in momentum
is just 2px. The force exerted on the wall during a time interval ∆t is
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Figure 1: Pressure on the wall of area A is the total force exerted from
the particles within the cylinder divided by the area.

Figure 2: An elastic collision: the absolute value of the momentum is
conserved.
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according to Newton’s second law

f =
dp

dt
≈ ∆p

∆t
=

2px

∆t
. (1)

We will now consider a time interval ∆t such that all the particles within
the cylinder with velocity |vx| and momentum |px| has collided with the
wall within time ∆t. The time it takes a particle with x-velocity vx at a
distance ∆x from the wall to hit the wall is ∆t′ = ∆x/vx. Within the time
∆t′, all the particles in the cylinder traveling in the direction towards the
wall (with velocity vx) have collided with the wall. But only half of the
particles travel in the direction towards the wall. The other half travels
in the opposite direction and had therefore already hit the wall within a
time interval ∆t′ earlier. So within the time

∆t = 2∆t′ =
2∆x

vx

every single particle in the cylinder with velocity |vx| has collided with the
wall. Inserting this in equation 1 we find that the force exerted by any
single particle of velocity |vx| and momentum |px| in the cylinder within
the time ∆t is

f =
2px

∆t
=

vxpx

∆x
.

The total velocity is given by v2 = v2
x + v2

y + v2
z , but on average the

velocity components are equally distributed among all three dimensions
such that the mean values 〈v2

x〉 = 〈v2
y〉 = 〈v2

z〉 giving that v2 = 3v2
x or

vx = v/
√

3 (note: this will not be true for one single particle, but will be
true when taking the average over many particles)on average. Exactly the
same argument holds for the momentum giving px = p/

√
3. We thus have

pxvx =
1

3
pv.

such that
f =

vp

3∆x
.

We have a distribution function n(p) which gives us the number density of
particles in the gas with momentum p such that n(p)dp is the number of
particles with momentum between p and p + dp. We have already seen at
least one example of such a distribution function: The Maxwell-Boltzmann
distribution function for an ideal gas. We used this for instance to find
the width of a spectral line as well as to find the number of particles with
a certain energy in a stellar core when calculating nuclear reaction rates.
We will here assume a general distribution function n(p). Since n(p) is
a number density, i.e. number per unit volume, we can write the total
particles in the cylinder N(p) with momentum p as the density times the
volume A∆x of the cylinder

N(p) = n(p)A∆x.
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The total force exerted on the wall of the cylinder by particles of momen-
tum p is then

dF =
pv

3∆x
N(p)dp =

1

3
p v n(p) A dp,

or in terms of the pressure exerted by these particles

dP =
dF

A
=

1

3
p v n(p) dp. (2)

We obtain the total pressure by integrating

P =
1

3

∫ ∞

0

p v n(p) dp (3)

which is the pressure integral. Given the distribution function n(p) (for
instance the Maxwell-Boltzmann distribution) and an expression relating
v and momentum p (for instance v = p/m for non-relativistic particles)
we can integrate this equation to obtain the pressure in the gas.

2 Distribution functions

A statistical distribution function n(p) describes how the momenta are
distributed between the particles in a gas. It tells us the number den-
sity of particles having a specific momentum p. The density of particles
with momentum between p and p + dp is given by n(p)dp. By making
substitutions (for instance p = mv), we can obtain the velocity distribu-
tion function n(v) which we used to obtain the width of a spectral line in
the lectures on electromagnetic radiation. Or by making the substitution
E = p2/(2m) we can obtain the distribution function n(E) giving the
number density of particles having a certain energy E. We used the latter
in the lecture on nuclear reactions.

The Maxwell-Boltzmann distribution function for an ideal gas is

n(~p) = n

(
1

2πmkT

)3/2

e−p2/(2mkT ),

where n is the total number of particles per volume. This is the density
n(~p) of particles with momentum ~p. Above we needed the number density
n(p) of particles with an absolute value of the momentum p. Thus, we
need to integrate over all possible angles of the vector ~p. We can imagine
that we have a momentum space, i.e. a three dimensional space with axes
px, py and pz (see figure 3). All possible momentum vectors ~p are vectors
pointing to a coordinate (px, py, pz) in this momentum space. All particles
which have an absolute value p of their momentum ~p are located on a
spherical shell at distance p from the origin in this momentum space.
Thus we may imagine a particle to have a position in the six dimensional
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Figure 3: Momentum space: All particles with |p| within [p, p + ∆p] are
located on the thin shell of thickness ∆p at radius |p|.

position-momentum space (~x, ~p). All particles have a position in real space
(x, y, z) and a position in momentum space (px, py, pz). All particles with
momentum between p and p+dp are located on a thin shell of thickness dp
at a distance p from the origin. The total volume of this shell is 4πp2dp.
Thus, to obtain the total number of particles within this momentum range,
we need to multiply the distribution with the momentum space volume
4πp2dp,

n(p)dp = n

(
1

2πmkT

)3/2

e−p2/(2mkT )4πp2dp.

This is the distribution function for absolute momenta p that we already
know. Note that whereas n(~p) has dimensions number density per real
volume per volume in momentum space, n(p)dp has dimensions number
density per real volume. The latter follows from the fact that we have
simply multiplied n(~p) with a volume in momentum space (4πp2dp) to
obtain n(p)dp.

We have also, without knowing it, encountered another distribution func-
tion in this course. The Planck distribution. The Planck distribution is
the number density of photons within a given frequency range

B(ν) =
2hν3

c2

1

ehν/(kT ) − 1
.

When you have taken courses in quantum mechanics and thermodynam-
ics you will deduce two more general distribution functions. When taking
quantum mechanical effects into account it can be shown that the dis-
tribution function for fermions (fermions were particle with half integer
quantum spin like the electron, proton or neutron) and bosons (bosons
were particles with integer quantum spin like the photon) can be written
generally as
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n(E) =
g(E)

e(E−µC)/(kT ) ± 1
,

where µC is the chemical potential and g(E) is the density of states which
we will come back to later. Here the minus sign is for bosons and the plus
sign for fermions. In the limit of low densities it turns out (we will not show
it here) that the exponential part dominates and the distribution function
becomes equal for fermions and bosons. In this case the chemical potential
has such a form that we get back the Maxwell-Boltzmann distribution
function (compare with the above expression). Note that the expression
for bosons resembles the Planck function: the Planck function can be
derived from the distribution function for bosons (you will do this in later
courses).

3 Degenerate gases

In the core of stars, the fermions, i.e. the electrons, is the dominating
species. Therefore we will here study the distribution function for fermions
and use the + sign in the above equation. We will look at an approxima-
tion of the distribution function for an electron gas at low temperature.
Of course, the temperature in the core of a star is not particularly low,
but we will later show that the same approximation and results are valid
even for high temperatures provided we are in the high density limit. In
the low temperature limit it can be shown that the chemical potential µC

equals the so-called Fermi energy EF . We will later find an expression
and physical interpretation for the Fermi energy, but first we will consider
the distribution function for fermions (in our case, electrons) given by

n(E) =
g(E)

e(E−EF )/(kT ) + 1
(4)

where

g(E) = 4π

(
2me

h2

)3/2

E1/2, (5)

where me is the electron mass. The number of electrons per volume with
an energy between E and E+dE in a gas with temperature T is now given
by n(E)dE. The energy E of the electron may be larger or smaller than
the Fermi energy EF . We will now measure the energy of the electron in
units of the Fermi energy. We define x = E/EF such that x < 1 when the
energy is less than the Fermi energy and x > 1 when the energy is larger
than the Fermi energy. The distribution function as a function of x, the
energy in units of the Fermi energy, can thus be written

n(x) =
g(x)

e(x−1)EF /(kT ) + 1
.
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In the low temperature limit, T → 0, the factor EF /(kT ) is a very large
quantity. The energy x defines whether the number in the exponential is
a large positive or a large negative quantity. If x > 1, i.e. that the energy
is larger than the Fermi energy, then the number in the exponential is a
large positive number and n(x) → 0. For x < 1, i.e. the energy is less
than the Fermi energy, the number in the exponential is a large negative
number. Thus the exponential goes to zero and n(x) → g(x). So for very
low temperatures, there is a sharp limit at x = 1. For E < EF we find
n(x) = g(x) whereas for E > EF we find n(x) = 0. In figure 4 we show
n(x)/g(x) for lower and lower temperatures.

The physical meaning of this is that for very low temperatures, all the
electrons have energies up to the Fermi energy whereas no electrons have
energies larger than the Fermi energy. The Fermi energy is a low temper-
ature energy limit for the electrons. Even if we cool an electron gas down
to zero temperature, there will still be electrons having energies all the
way up to the Fermi energy. But if the temperature is zero, why don’t
all electrons have an energy close to zero? Why don’t all electrons go and
occupy the lowest possible energy state allowed by quantum mechanics
(in quantum mechanics, a particle cannot have zero energy)? The rea-
son for this is hidden in quantum physics: at low temperatures the gas
of electrons start to behave like a quantum gas, a gas where quantum
mechanical effects are important. The quantum mechanical effect which
we see on play here is the Pauli exclusion principle: Two fermions cannot
occupy the same energy state. To understand this principle we need to
dig even deeper into the quantum theory. According to quantum mechan-
ics momentum is quantized. This means that a particle cannot have an
arbitrary momentum. The momentum in any direction can be written as

px = Nx · p0,

where Nx is an integer quantum number and p0 is the lowest possible
momentum. Thus, an electron can only have x-momenta p0, 2p0, 3p0 etc.
No values in between are allowed. So the total momentum of an electron
(or any particle) can be written

p2 = p2
x + p2

y + p2
z = p2

0(N
2
x + N2

y + N2
z ) ≡ p2

0N
2,

where (Nx, Ny, Nz) are the three quantum numbers defining the state of
the electron. According to the Pauli exclusion principle only one elec-
tron can occupy the quantum state (Nx, Ny, Nz). No other electrons can
have exactly the same combination of quantum numbers. We go back
to the above image of a momentum space where a particle has a posi-
tion (px, py, pz) in a three dimensional momentum space in addition to
a position in normal space. We can now write this position in terms of
quantum numbers as (px, py, pz) = p0(Nx, Ny, Nz). Since only one elec-
tron can have a given momentum p0(Nx, Ny, Nz), one could imagine the
momentum space filled with boxes of volume p0 × p0 × p0. Only one elec-
tron fits into each box. We remember that all electrons with momentum
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Figure 4: The number of electrons n(E) divided by g(E) for different
energies E. The solid line is for a gas at temperature T = 10 K, the
dotted line for a gas at temperature T = 2 K and the dashed line for
T = 0.1 K. When the temperature approaches zero, there are less and less
electrons with energy larger than the Fermi energy EF .

lower than a given momentum p is within a sphere with radius p in this
momentum space. All electrons with a higher momentum p are outside
of this sphere. But inside the sphere of radius p, there is only room for
4/3πN3 boxes of size p3

0 (total volume of the momentum space sphere
(4/3)πp3 = (4/3)πp3

0N
3 divided by volume of box p3

0). If all these boxes
are filled, no more electron may settle on a position inside this sphere, it
has to remain outside of the sphere. When you lower the temperature of
an electron gas, the electrons loose momentum and start to occupy the
lowest possible momentum states, i.e. they all start to move towards the
origin (0, 0, 0) in momentum space. But when all start to move towards
the origin in momentum space (see again figure 3), all the boxes around
the origin are soon occupied, so the electrons need to remain with higher
momenta at larger distances p from the origin. But if they need to re-
main with larger momenta, this means that they also have larger energy:
The same argument therefore applies to energy. The energy states of the
electrons are quantized so not all electrons may occupy the lowest energy
state. For this reason we see that the distribution function for electrons
at low temperatures is a step function: All electrons try to occupy the
lowest possible energy state. The lowest energy states are filled up to the
Fermi energy. If we call pF the Fermi momentum, the momentum cor-
responding to the Fermi energy we can imagine that all electrons start
to gather around the origin in momentum space out to the radius pF .
All electrons are packed together inside a sphere of radius pF in momen-
tum space. When you add more electrons to the gas, i.e. the density of
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electrons increases, the sphere in momentum space inside which all the
electrons are packed also needs to expand and the Fermi momentum pF

increases. Thus the Fermi momentum and the Fermi energy are functions
of the electron density ne.

Having learned that for very low temperatures, the electrons are packed
together in momentum space in a sphere of radius pF we can find the
total number density (per real space volume) ne of electrons in the gas by
summing up all the boxes of size p3

0 inside this sphere. We know that all
these boxes are occupied by one electron and that no electrons are outside
this sphere (this is completely true only for T = 0). First we need to know
the fermion distribution function n(~p) in terms of momentum rather than
in terms of energy which we used above. The fermion distribution function
for momentum can be written in the low temperature limit as

n(~p) =
1

e(p2−p2
F )/(2mkT ) + 1

2

h3
.

This is the number density per volume in real space per volume in mo-
mentum space. Considering again the low temperature case, we see, using
the same arguments as before, that n(~p) → 0 for p > pF and n(~p) → 2/h3

for p < pF . Thus n(~p) is a constant for p < pF and zero for p > pF . In
order to obtain the number density of electrons per real space volume we
need to integrate this expression over the momentum space volume. So
for T → 0

ne =

∫ ∞

0

n(~p)4πp2dp =

∫ pF

0

2

h3
4πp2dp =

8π

3h3
p3

F

where we integrate over the sphere in momentum space in shells of thick-
ness dp out to the Fermi momentum pF where n(~p) is a constant (2/h3) for
p < pF and is zero for p > pF . Make sure you understood this derivation!
We use this result to obtain an expression for the Fermi momentum

pF =

(
3h3ne

8π

)1/3

. (6)

Using the non-relativistic expression for energy we can now find the Fermi
energy expressed in terms of the electron number density ne

EF =
p2

F

2me

=
h2

8me

(
3ne

π

)2/3

. (7)

As we anticipated, the Fermi energy depends on the density of electrons.
The higher the density, the larger the Fermi energy and the Fermi mo-
mentum in order to have space for all the electrons within the sphere of
radius pF . A gas where all particles are packed within this sphere so that
the particles are fighting for a box in momentum space among the lowest
energy states is called a degenerate gas. A partially degenerate gas is a gas
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where there are still a few vacant boxes among the lowest energy states
such that some particles have energies larger than the Fermi energy. We
now need to find a criterion for when a gas is degenerate.

When the temperature of a gas is high and the density low, the distribu-
tion function is the Maxwell-Boltzmann distribution function. We have
previously learned that for a gas following the Maxwell-Boltzmann distri-
bution function, the mean energy per particle is < E >= (3/2)kT . The
gas starts to become degenerate when most of the particles have ener-
gies below the Fermi energy. The gas therefore starts to be degenerate
when the mean energy of the particles go below the Fermi energy. For an
electron gas we thus have the criterion

3

2
kT < EF =

h2

8me

(
3ne

π

)2/3

,

or

T

n
2/3
e

<
h2

12mek

(
3

π

)2/3

. (8)

As discussed above, this criterion is satisfied for very low temperatures,
but we now see that it is also satisfied for very high densities. In the
exercises you will estimate what kind of densities are needed in the stellar
cores for the core to be degenerate.

Now take a deep breath, close your eyes and try to find out how much you
have understood from this section. Then if this is not the 3rd time you
read it, go back and read again with the goal of understanding a little bit
more this time.

4 The pressure of a degenerate electron gas

When the density of electrons in the stellar core becomes high enough,
most electrons have energies below the Fermi energy and the above crite-
rion for degeneracy is satisfied. The core is electron degenerate. Now we
will study the properties of a degenerate gas. The equation of state, the
equation for the pressure as a function of density and temperature, is one
of the most important properties describing how a gas behaves.

In order to find the pressure, we need to evaluate the pressure integral
(equation 3) for the degenerate gas. First we need the density n(p)dp of
electrons per volume with momentum p in the interval [p, p+dp]. By now
we have learned that n(~p)4πp2dp = n(p)dp such that for p < pF we have
n(p)dp = (2/h3)4πp2dp and for p > pF we have n(p) = 0.

P =
1

3

∫ ∞

0

p v n(p) dp =
1

3

∫ pF

0

p2

me

2

h3
4πp2dp =

8π

3meh3

1

5
p5

F .
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Inserting the expression for the Fermi momentum (equation 6), we find

P =

(
3

π

)2/3
h2

20me

n5/3
e (9)

We see that the pressure of a degenerate gas does not depend on the
temperature. If the temperature increases or decreases, the pressure does
not change! This is very different from a normal gas. It means that the
degenerate stellar core will not expand or contract as the temperature
changes. The only exception being when the temperature increases so
much that the condition (8) for degeneracy is no longer valid and the
degeneracy is broken. In this case, the electrons have gained so much
energy that they are not packed in the sphere of the lowest momentum
states in momentum space. The gas is no longer degenerate and a normal
equation of state which depends on the temperature needs to be used.

We have deduced the pressure of a degenerate gas using the non-relativistic
expressions for energy. The temperature in the stellar cores are often so
high that the velocities of the particles are relativistic. Repeating the
above deductions using the relativistic expression, we would obtain

P =
hc

8

(
3

π

)1/3

n4/3
e . (10)

5 Summary

We have seen that if we compress a gas of fermions sufficiently, so that
the degneracy condition (equation 8) is fulfilled, the fermions are packed
together inside a sphere of radius pF in momentum space. All the lowest
energy states of the fermions are occupied up to the Fermi energy EF . This
typically happens when the temperature is very low so that the fermions
fall down to the lowest possible energy states in momentum space. It
might also happen for high temperatures if the density is high enough: In
this case there are so many fermions present within a volume so all fermion
states up to EF are occupied even if the temperature is not particularly
low.

A degenerate fermion gas has a degeneracy pressure which is independent
of the temperature of the gas given by equation (9) for a non-relativistic
gas (the particles have non-relativistic velocities) and by equation (10)
for a relativistic gas. This pressure originates from the resistance against
being squeezed further together in real and momentum space and only
depends on the density of the gas. We obtained the expression for the
pressure by inserting the distribution function for a degenerate gas in the
pressure integral (equation 3). The distribution function for a degener-
ate gas took on a particular form: It is a step function being constant
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for energies below the Fermi energy and zero above. This was simply a
consequence of the Pauli exclusion principle, one energy state cannot be
occupied by two fermions at the same time. When the quantum states of
lowest energy are occupied, the fermions need to occupy states of higher
energy. For a completely degenerate gas, the Fermi energy EF gives within
which energy there is room for all fermions at a given density.

If the temperature increases sufficiently, the fermions gain enough energy
to occupy states well outside the sphere of radius pF in momentum space.
Then there will be vacant low energy states, the condition of degeneracy
is no longer fulfilled and the gas has become non-degenerate following a
normal temperature-dependent equation of state.

6 Problems

Problem 1 (2–3 hours)

In the text we used the pressure integral to find the pressure of a de-
generate electron gas. Study the derivation carefully and make sure you
understand every step before embarking on this exercise.

1. Now we want to find the pressure in a “normal” ideal gas which
follows the Maxwell-Boltzmann distribution function. Find the ex-
pression for the Maxwell-Boltzmann distribution function and use
this in the pressure integral. Assume non-relativistic velocities. Re-
member also that the distribution function n(p) used in the pressure
integral needs to be normalized such that∫ ∞

0

n(p)dp = n,

where n is the number density of particles per real space volume.
You now have all the information you need to find the pressure of a
gas following Maxwell-Boltzmann statistics so your task is simply:
find P as a function of n and T . These integrals might be useful:∫ ∞

0

x3/2e−xdx =
3
√

π

4∫ ∞

0

x1/2e−xdx =

√
π

2

The answer you find for P should be familiar to you.

2. Now we will test the expression by making a computer simulation.
We will now simulate a box of size 10 cm × 10 cm × 10 cm.

(a) We will fill the box with hydrogen atoms with a temperature
of T = 6000 K and compute the pressure that they exert on
the walls of the box. We will put 10 millions particles in the
box. You first need to make an array with the (x, y, z) position
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of each of the particles and another array with the (vx, vy, vz)
velocities of each of the particles. In order to find the velocities
of the atoms, use the same algorithm that you used in problem
1 in the chapter on nuclear reactions to draw random velocities
from a Maxwell-Boltzmann distribution. The position of the
particles in the box is also random, but random with a uniform
distribution which means that there is an equal probability of
finding an atom at any position in the box. Use the function
random.uniform in each direction to find a random position of
the particles. Then choose one of the walls of the box and find
out which particles will hit this wall within a time ∆t = 10−9 s
in the future, as well as how many particles hit the wall a time
∆t in the past. For each of these particles calculate the force
they exert on the wall and sum up these forces to calculate the
pressure.

(b) Now increase the temperaure of the gas, first to T = 50000 K,
T = 15 × 106 K and finally T = 109 K. For each of these
temperaures, calculate the pressure on a wall of the box.

(c) Use the analytical expression you obtained for the pressure as
a function of density and temperaure (you need to calculate
the density of the gas in your box) and make a plot: Plot
this analytical function P as a function of temperaure T from
T = 6000 K to T = 109 K in a log-log plot. In the same plot,
plot 4 points: the 4 values for the pressure that you obtained
in the simulation above. Does the analyical expression match
the simulated values well? If there are any discrepancies can
you imagine why? How could you improve the precision?

Problem 2 (1–2 hours)

In the text we found the condition for a gas to be degenerate in terms of the
temperature T of the gas and the number density ne of electrons (number
of electrons per volume). We will now try to rewrite this expression into
a condition on the mass density ρ of the gas.

1. Assume that the gas is neutral, i.e. that there is an equal number of
protons and electrons. Show that this gives

ne =
Zρ

AmH

,

where Z is the average number of protons per nucleus, A is the
average number of nucleons per nucleus, mH is the hydrogen mass
and ρ is the total mass density.

2. Find the expression for the condition for degeneracy in terms of the
total mass density ρ instead of ne.
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3. Find the minimum density a gas with temperature T = 109 K must
have in order to be degenerate. A typical atom in the gas has the
same number of protons and neutrons.

4. If you compress the whole Sun into a sphere with radius R and
uniform density until it becomes degenerate, what would be the
radius R of the degenerate compressed Sun (assume the temperature
T = 109 K for the final stages of the Sun’s life time)? This is basically
what will happen at the end of the Sun’s life time. Gravitation will
compress it until it becomes a degenerate white dwarf star. A white
dwarf star typically has a radius similar to the radius of the Earth.
Does this fit well with your result?

5. What about Earth? To which radius would you need to press the
Earth in order for it to become degenerate (assume again that the
temperature will reach T = 109 K when compressing the Earth)?

Problem 3 (1–2 hours)

The number density per real space volume per momentum space volume
of particles with momentum ~p is given by n(~p) found in the text. In order
to find the number density per real space volume of particles with absolute
momentum p we multiplied n(~p) with an infinitely small volume element
4πp2dp and obtained n(p)dp. Go back to the text and make sure that you
understand this transition.

1. Now we will try to find the number density per real space volume of
particles with energy E using the non-relativistic formula for energy
E = p2/2m. Start with n(p)dp, make the substitution and show
that you arrive at equation 4 with g(E) looking like equation in 5.

2. In the exercises in the previous lecture, we found that the mean
kinetic energy of a particle in an ideal gas is (3/2)kT . Now we will
try to find the mean kinetic energy in a degenerate gas. First of all,
repeat what you did in the exercise in the previous lecture. Now you
will repeat the same procedure, but use n(E) and E directly,

< E >=

∫ ∞

0

P (E)EdE.

You will need to find out how P (E) looks like. The answer is

< E >=
3

5
EF .

Hint: Assume a very degenerate gas at very high density.
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Figure 5: Info-figure for problem 2: This image shows Sirius A, the bright-
est star in our nighttime sky, along with its faint, tiny stellar companion,
the white dwarf Sirius B, which is the tiny dot at lower left. Using the
Hubble telescope’s STIS spectrograph astronomers have been able to iso-
late the light from the white dwarf and disperse it into a spectrum. STIS
measured that the light from Sirius B was stretched to longer, redder
wavelengths due to the white dwarf’s powerful gravitational pull. Based
on those measurements, astronomers have calculated Sirius B’s mass at
98 percent that of our Sun (its diameter is only 12 000 km). Analysis of
the spectrum also yielded an estimate for its surface temperature: about
25 000 K. (Figure: NASA & ESA)
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AST1100 Lecture Notes

22: The end state of stars

We will continue the discussion on stellar evolution from lecture 20. The
star has reached the asymptotic giant branch having a radius of up to
1000 times the original radius. The core consists of carbon and oxygen but
the temperature is not high enough for these elements to fuse to heavier
elements. Helium fuses to carbon and oxygen in a shell around the core.
Hydrogen fuses to helium in another shell further out. In the outer parts
of the star, the temperature is too low for fusion reactions to take place. In
the low and medium mass stars, convection has been transporting heavy
elements from the core to the surface of the star allowing observers to
study the composition of the core and test stellar evolutionary theories
by studying the composition of elements on the stellar surface. The core
is still contracting trying to reach a new hydrostatic equilibrium. The
further evolution is now strongly dependent on the mass of the star.

1 Low mass stars

We will soon find out how we define low mass stars, but for the moment
we will only say that a typical low mass star is our Sun. The core of the
star, consisting mainly of carbon and oxygen contracts until the density of
electrons is so high that the core becomes electron degenerate. In the more
massive ’low mass stars’ nuclear fusion may to some extent burn these
elements to heavier elements like neon and magnesium. But eventually
the core temperature is not high enough for further nuclear reactions and
the core remains electron degenerate.

As the star contracts, the temperature in the outer parts of the star in-
creases and the hydrogen burning again becomes more efficient than the
helium burning in lower shells. The helium produced in the upper shells
’falls’ down on lower shells where no helium burning takes place (helium
burning takes place even further down in the hotter areas). After a while,
the density in the lower helium rich shell becomes very high and partially
degenerate. At a point, the temperature in the lower shell is high enough
for an explosive ignition of helium and a helium shell flash occurs, similar
to the helium core flash described in lecture 20, but less energetic. The
flash lifts the hydrogen burning shell to larger distances from the center.
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Figure 1: Info-figure: Many factors influence the rate of stellar evolution,
the evolutionary path, and the nature of the final remnant. By far the most
important factor is the initial mass of the star. This diagram illustrates in
a general way how stars of different masses evolve and whether the final
remnant will be a white dwarf, neutron star, or black hole. (Note that for
the highest mass stars it is also possible for the supernova explosion to
obliterate the star rather than producing a black hole. This alternative is
not illustrated here.) Stellar evolution gets even more complicated when
the star has a nearby companion. For example, excessive mass transfer
from a companion star to a white dwarf may cause the white dwarf to
explode as a Type Ia supernova. (Figure: NASA/CXC/M.Weiss)
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Hydrogen burning ceases, the star contracts until the temperature again
is high enough for hydrogen burning. The whole process repeats, the pro-
duced helium falls on to lower layers which finally start burning helium
in another helium shell flash. The star is very unstable and the repeated
helium flashes result in huge mass losses from the star. The outer layers
of the star are blown away in the helium flashes (this is one of the theories
describing the huge mass losses the star undergoes in this period). A huge
cloud of gas and dust is remaining outside the core of the star. After a
few millions years, all the outer layers of the star have been blown off and
only the degenerate carbon/oxygen core remains. This star which now
consist only of the remaining degenerate core is called a white dwarf. The
surrounding cloud of gas which has been blown off is called a planetary
nebula (these have nothing to do with planets)

As the star was blowing away the outer layers, the hotter inner parts of
the star made up the surface. Thus, the surface temperature of the star
was increasing, and the star was moving horizontally to the left from the
asymptotic giant branch in the HR-diagram. Finally when the layers pro-
ducing energy by nuclear fusion are blown off, the luminosity of the star
decreases dramatically and the star ends up on the bottom of the HR-
diagram as a white dwarf (see HR-diagram in figure 2). The degenerate
white dwarf does not have any sources of energy production and will grad-
ually cool off as the heat is lost into space. The white dwarf will move to
the right in the HR-diagram becoming cooler and dimmer.

How large is a white dwarf star? We can use the equation of hydrostatic
equilibrium to get an estimate of the radius R assuming uniform den-
sity of the white dwarf (look back at lecture 20 where we did a similar
approximation in the equation of hydrostatic equilibrium):

P

R
≈ GM

R2

M

(4/3)πR3
=

3GM2

4πR5
(1)

The pressure P is now the degeneration pressure. Inserting the expression
for the degeneration pressure from the previous lecture in this equation
gives (

3

π

)2/3
h2

20me

n5/3
e =

3GM2

4πR4
. (2)

The electron number density ne can be written in terms of the total gas
density as

ne = np =
ρp

mH

=
Z

A

ρ

mH

.

Here Z is the number of protons per nucleus and A is the number of
nucleons per nucleus. As the gas in total is neutral, the number of electrons
in the gas equals the number np of protons. The number density, i.e.,
total number of protons per volume in the gas equals the mass density ρp

of protons divided by the hydrogen mass (basically equal to the proton
mass). The mass density of protons in a gas equals the mass density of
the gas times the fraction of the mass in protons given by Z/A. A nucleus
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Figure 2: Motion in the HR-diagram for the last stages of stellar evolu-
tion. This is the path that a low mass M < 8M� star follows. From the
asymptotic giant branch, the outer layers are blown off and the hotter in-
ner parts become the new and hotter ’surface’. The effective temperature
increases and the star moves from 1 to 2. As the layers were nuclear fusion
takes place are blown off, the total luminosity decreases as the star is no
more capable of producing energy. The star therefore falls down from 2
to 3 to the white dwarf area in the HR-diagram.

4



Figure 3: Info-figure: At around 215 pc away, the famous Helix Nebula
in the constellation of Aquarius is one of the nearest planetary nebulae to
Earth. The red ring measures roughly 1 pc across and spans about one-
half the diameter of the full Moon. A forest of thousands of comet-like
filaments, embedded along the inner rim of the nebula, points back toward
the central star, which is a small, super-hot white dwarf. In general, a
planetary nebula is an emission nebula consisting of an expanding glowing
shell of ionized gas ejected during the asymptotic giant branch phase of
certain types of stars late in their life. They have nothing to do with
planet formation, but got their name because they look like planetary
disks when viewed through a small telescope. Planetary nebulae have
extremely complex and varied shapes, as revealed by modern telescopes.
(Figure: NASA/ESA)
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typically contains the same number of neutrons as protons such that the
total number of nucleons is twice the number of protons and Z/A = 0.5.
We will use this number in the calculations. Inserting this expression for
ne in the equation of hydrostatic equilibrium (equation 2) we have(

3

π

)2/3
h2

20me

(
Z

AmH

)5/3
M5/3

(4/3π)5/3R5
=

3GM2

4πR4
,

or

RWD ≈
(

3

2π

)4/3
h2

20meG

(
Z

AmH

)5/3

M−1/3.

For M = M� (where M is the mass which remained in the degenerate
core, the star originally had more mass which was blown off) the radius
of the white dwarf is similar to the radius of the Earth. A white dwarf
is thus extremely dense, one solar mass compressed roughly to the size of
the Earth. There is another interesting relation to be extracted from this
equation. Multiplying the mass on the left side we have

MR3 ∝ MV = constant,

where V is the volume of the white dwarf. Thus, if the mass of a white
dwarf increases, the volume decreases. A white dwarf gets smaller and
smaller the more mass it gets. It shrinks by the addition of mass. This
can be understood by looking at the degenerate equation of state: When
more mass is added to the white dwarf, the gravitational inward forces
increase. This has to be balanced by an increased pressure. From the
equation of state we see that since there is no temperature dependence,
the only way to increase the pressure is by increasing the density. The
density is increased by shrinking the size. So a white dwarf must shrink
in order to increase the density and thereby the degeneration pressure in
order to sustain the gravitational forces from an increase in mass.

Can a white dwarf shrink to zero size if we just add enough mass? Clearly
when the density increases, the Fermi energy increases and the energy
of the most energetic electrons increases. Finally the energy of the most
energetic electrons will be so high that the velocity of these electrons will
be close to the speed of light. In this case, the relativistic expression for
the degeneration pressure is needed. We remember that the relativistic
expression for the degeneration pressure went as P ∝ ρ4/3 instead of P ∝
ρ5/3 in the non-relativistic case. Inserting the relativistic expression in the
equation of hydrostatic equilibrium we thus expect to obtain a different
relation between radius and mass. Inserting the relativistic expression in
equation 1 instead we obtain(

3

π

)1/3
hc

8

(
Z

AmH

)4/3
M4/3

(4/3π)4/3R4
=

3GM2

4πR4
.
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We see that the radius cancels out of the equation and we are left with a
number for the mass of the relativistic white dwarf:

M ≈ 3

16π
2−3/2

(
hc

G

)3/2(
Z

AmH

)2

.

A more exact calculation taking into account non-uniform density would
have given

MCh ≈
√

3/2

2π

(
hc

G

)3/2(
Z

AmH

)2

≈ 1.4M�.

This is the Chandrasekhar mass MCh which gives the upper limit of the
mass of a white dwarf. For a relativistic degenerate gas the pressure can
only withstand the gravitational forces from a maximum mass of M =
1.4M�. If the mass increases beyond that, the white dwarf will collapse.
We will discuss this further in the next section. Having both the typical
mass (or actually the upper bound on the mass) and the typical radius
of a white dwarf we can find the typical density: a small needle made of
white-dwarf material would weight about 50 kg.

So we are now closer to the definition of a ’low mass star’. A ’low mass
star’ is a star which has a mass low enough so that the remaining core after
all mass losses has a mass less than the Chandrasekhar mass 1.4M�. The
final result of stellar evolution for low mass stars is therefore a white dwarf.
It turns out that stars which have up to about 8M� when they reach the
main sequence will have a core mass lower than the Chandrasekhar limit.
We will now discuss the fate of stars with a main sequence mass larger
than 8M�.

2 Intermediate and high mass stars

For stars of mass M > 8M�, the evolution is different. The higher mass
makes the pressure and thereby the temperature in the core higher than in
the case of a low mass star. The forces of gravity are larger and therefore
the pressure needs to by higher in order to maintain hydrostatic equilib-
rium. The carbon-oxygen core contracts, but before it gets degenerate
the temperature is high enough for these elements to fuse to heavier el-
ements. This sequence of processes which hydrogen and helium followed
is repeated for heavier and heavier elements. When one element has been
depleted, the core contracts until the temperature is high enough for the
next fusion process to ignite while burning of the different elements takes
place in shells around the core. This will continue until the core consists of
iron 56

26Fe. We learned in the lecture on nuclear reactions that in order to
produce elements heavier than iron, energy needs to be added, no energy
is released. For elements heavier than iron, the mass per nucleon increases
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when the number of nucleons in the core increases. This is why no en-
ergy can be released in further fusion reactions. Nuclear processes which
need energy input are difficult to make happen: The quantum mechanical
probability for a nucleus to tunnel through the Coloumb barrier only to
loose energy in the fusion process is very small. Thus, when the stellar
core consists of iron, no more nuclear processes take place and the core
starts contracting again. At this point, the star might look like figure 4.
There are several layers of elements which resulted from previous nuclear
fusion processes around the iron core. Fusion processes are still taking
place in these shells.

At this point the temperature in the core is extremely high T ∼ 109 −
1010 K containing a dense gas of high energy photons. The core continues
contracting and no more nuclear fusion processes are available to produce
a pressure to withstand the forces of gravity pushing the core to higher
and higher densities. The energy of the photons is getting so high that
they start splitting the iron atoms by the photo disintegration process

56
26Fe +0

0 γ → 134
2He + 41

0n

and helium atoms are further split into single protons and neutrons

4
2He +0

0 γ → 21
1p + 21

0n

reversing the processes which have been taking place in the core of the
star for a full stellar life time. To split iron nuclei or other nuclei lighter
than iron (with a few exceptions) requires energy. Again, by looking at
the plot from the lecture on nuclear processes we see that nuclear fission
processes only produce energy for elements heavier than iron. For lighter
elements, the mass per nucleon increases when a core is split and energy
is needed in the process. Thus, the photodisintegration processes take
thermal energy from the core, energy which would contribute to the gas
pressure preventing a rapid gravitational collapse of the core. When this
energy is now taken away in the nuclear fission processes, the temperature
and thereby the gas pressure goes down and the forces acting against
gravity are even smaller. The core can now contract even faster. The
result of the fast collapse is that the core is divided in two parts, the inner
core which is contracting and the outer core being in free fall towards the
rapidly contracting inner core.

The inner core becomes electron degenerate, but the degeneration pressure
is not sufficient to withstand the weight from the mass around the core.
But quantum physics absolutely forbids more than one electron to occupy
one quantum state in momentum space, so how can the inner core continue
contracting? Nature has found a solution: electron capture. Electrons and
the free protons which are now available after the splitting of the nuclei
combine to form neutrons

1
1p +1

−1 e →1
0 n +0

0 ν
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Figure 4: The structure of a star just hours before a supernova explosion.
Energy production in the core has ceased as it now consists of Fe—the
final product of nuclear fusion. Different elements are still burning in
layers around the core.
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The final result is an inner core consisting almost entirely of neutrons.
The neutron core continues collapsing until it becomes degenerate. This
time, it is the neutrons and not the electrons which are degenerate. The
stellar core is now so dense that all the quantum states of the neutrons are
occupied and the core cannot be compressed further. The neutron degen-
eration pressure withstands the forces of gravity. Why can the neutron
degeneration pressure withstand the forces of gravity when the electron
degeneration pressure could not? The answer can be found in the expres-
sion (9) in the previous lecture for the degeneration pressure. Even if the
neutron mass is much larger than the electron mass which should lead to
a smaller degeneration pressure, the density is now much higher than it
was in the electron degenerate gas. The higher density makes the total
degeneration pressure larger.

When the inner core consisting mainly of neutrons becomes degenerate,
the collapse is suddenly stopped, the core bounces back and an energetic
shock wave is generated. This shock wave travels outwards from the core
but is blocked by the massive and dense ’iron cap’, the outer core, which
is in free fall towards the inner core. The energy of the shock wave heats
the outer core till temperatures large enough for photon disintegration
and electron capture processes to take place. Thus, almost all the energy
of the shock wave is absorbed in these energy demanding processes. So
the huge amounts of energy carried outwards by the shock wave could
in principle have blown the whole star apart, but the wave is blocked by
the outer core where the energy is absorbed in photo disintegration and
electron capture processes.

The final part of the story is truly remarkable. We see that the elec-
tron capture process releases neutrinos. So parts of the energy ’absorbed’
in this process is reemitted in the form of energetic neutrinos. A large
amount of electron capture processes are now taking place and computer
simulations show that a neutrino sphere is created, an immensely dense
wall of neutrinos is traveling outwards. Normally, we do not need to take
neutrinos into account when studying processes in the stellar interiors
because neutrinos hardly interact with matter at all and just leaves the
star directly without influencing the star in any way. Now the outer core
is extremely dense increasing the reaction probability of processes where
neutrinos are involved. There is a huge amount of energetic neutrinos
trying to pass through the very dense outer core. The combination of
extreme densities and extreme neutrino fluxes makes the ’impossible’ (or
actually improbable) possible: a large part of the neutrinos reacts with
the matter in the outer core. About 5% of the energy in the neutrinos is
heating the outer parts just enough to allow the shock wave to continue
outwards. The shock wave lifts the outer parts of the star away from the
core, making the star expand rapidly. In short time, most of the star has
been blown away to hundreds of AU away from the remaining inner core.
This is a supernova explosion. The luminosity of the explosion is about
109L� which is the luminosity of a normal galaxy. The total luminsity of
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the supernova is thus similar to the total luminosity of an entire galaxy.
And the energy released in photons is just a fraction of the energy released
in neutrinos. An enormous amount of energy is released over very short
time scales. Where does the energy from this explosion originally come
from? We will discuss this in the exercises. Now we will look at the corpse
of the dead star.

3 The fate of intermediate and high mass

stars

For stars with mass M < 25M�, the neutron degeneration pressure is
high enough to withstand the forces of gravity and thereby to maintain
hydrostatic equilibrium. Normally only 2 − 3M� have remained in the
core, the rest of the star was blown away in the supernova explosion. The
remaining 2 − 3M� star consists almost entirely of neutrons produced
in the electron capture process taking place in the last seconds before the
supernova explosion. It is a neutron star. As you will show in the exercises,
the density of the neutron star is similar to the density in atomic nuclei.
The neutron star is a huge atomic nucleus. In the exercises you will also
show that the typical radius of a neutron star is a few kilometers. The
mass of 2-3 Suns are compressed into a sphere with a radius of a few
kilometers. The density is such that if you make a small needle out of
materials from a neutron star it would weight about 106 tons.

It is thought that neutron stars have solid outer crusts comprised of heavy
nuclei (Fe) and electrons. Interior to this crust the material is comprised
mostly of neutrons, with a small percentage of protons and electrons as
well. At a sufficiently deep level the neutron density may become high
enough to give rise to exotic physical phenomena such as super-fluidity
and perhaps even a quark-gluon plasma where one could find free quarks.
To model the physics of the interior of neutron stars, unknown particle
physics is needed. These neutron stars are therefore macroscopic objects
which can be used to understand details of microscopic physics.

For white dwarfs we found that there is a an upper limit to the mass of
the dwarf. Repeating these calculations reveals that there is a similar up-
per limit to the mass of neutron stars. Depending somewhat on the less
known physics in the interiors of neutron stars, one has found this upper
limit to be somewhere between 2 and 3 solar masses. If the collapsing core
has a mass larger than about 3 solar masses, the gravitational forces will
be higher than the neutron degeneration pressure. In this case, no known
physical forces can withstand the forces of gravity and the core continues
to contract and becomes a black hole. Using current theories of quan-
tum physics and gravitation, the core shrinks to an infinitely small point
with infinite mass densities. Infinite results in physics is usually a sign of
physical processes which are not well understood. When the collapsing
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Figure 5: Info-figure: This dramatic image shows the Crab Nebula, a 3.4
pc wide expanding supernova remnant in the constellation of Taurus. The
supernova explosion was recorded in 1054 by Chinese, Japanese, Arab,
and (possibly) Native American observers. The orange filaments are the
tattered remains of the star and consist mostly of hydrogen. The rapidly
spinning and highly magnetized neutron star embedded in the center of
the nebula is the dynamo powering the nebula’s interior bluish glow. The
blue light comes from electrons whirling at nearly the speed of light around
magnetic field lines. The neutron star, like a lighthouse, ejects twin beams
of radiation from gamma-rays to radio waves that appear to pulse 30 times
a second due to the neutron star’s rotation. (Figure: NASA/ESA)
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core becomes sufficiently small, both the general theory of relativity for
large masses as well as quantum physics for small scales are needed at
the same time. These theories are at the moment not compatible and a
more general theory is sought in order to understand what happens at the
center of the black hole.

4 Pulsars

When the stellar core is contracting, the rotational velocity of the core in-
creases because of conservation of angular momentum. In order to main-
tain the angular momentum when the radius decreases, the angular ve-
locity needs to increase. In the exercises you will calculate the rotational
speed of the Sun if it had been compressed to the size of a neutron star.
After the formation of the neutron star the rotational period is typically
less than a second.

In 1967, Jocelyn Bell discovered a source of radio emission which emitted
regular radio pulses. The pulses where found to be extremely regular, with
exactly the same period between each pulse. The period between each
pulse turned out to be about one second. Later, several of these regular
radio emitters have been discovered, most of which with a period of less
than a second. At first, no physical explanation for the phenomenon was
found and the first radio emitter was called LGM-1 (Little Green Men).
Later the name pulsar has been adopted. Today about 1500 pulsars are
known, the fastest is called the millisecond pulsar due to the extremely
short pulsation period.

Today the leading theory trying to explain the regular radio pulses from
pulsars is that the pulsars are rotating neutron stars. In the exercises you
will show that in order to explain pulsars in terms of a rotating object,
the radius of the object needs to be similar to the radius of a neutron star.
For larger object to rotate sufficiently fast, the outer parts of the object
would need to rotate with a velocity larger than the velocity of light. The
physics behind the process leading to the radio pulses of pulsars is still
an an active field of research and the details are not well understood. In
short, the current theory says that the neutron star has a strong magnetic
field (which is created during the collapse of the stellar core) with the
axis of the magnetic field lines shifted with respect to the axis of rotation
(see figure 6). When the star rotates, the field lines are sweeping out a
cone around the rotation axis. Electrons in a hot electron gas around the
neutron star are accelerated in the strong magnetic field lines from the
neutron star. When electrically charged particles are accelerated, they
emit electromagnetic radiation, synchrotron radiation. The electrons only
feel the magnetic field when the magnetic poles (which are not aligned
with the rotation axis) of the neutron star points almost directly in their
direction. Thus, only the electrons in the gas where the magnetic field lines
are pointing at the moment emit synchrotron radiation. This radiation is
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Figure 6: A rotating neutron star: The magnetic axis is not aligned with
the rotation axis. Therefore the magnetic field lines are dragged around,
producing synchrotron radiation as they accelerate electrons outside the
neutron star. The synchrotron radiation is directed in the direction of the
magnetic field lines. Every time the fields lines sweep over our direction
we see a pulse of radiation.
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emitted radially outwards from the neutron star. If the Earth is along the
line of such an emission, observers will see a pulse of synchrotron radiation
each time the magnetic poles of the neutron star points in the direction
of the Earth. We will therefore receive a pulse of radiation once every
rotation period.

5 Generations of stars

In the Big Bang, mainly hydrogen and helium were produced. We have
learned that heavier elements are produced in nuclear fusion processes
in the interior of stars. But fusion processes produce energy only when
the nuclei involved are lighter than iron. Fusion processes which produce
elements heavier than iron need energy input and are therefore extremely
difficult to make happen. How can it be that the Earth consists of large
amounts of elements heavier than iron? Human beings contain elements
heavier than iron. Where did they come from?

We learned that in the final stages of the stellar evolutionary process for
high mass stars, the temperature in the core is very high and high energy
photons are able to split nuclei. At these high temperatures, the iron nuclei
around the core have so high thermal energy that even nuclear processes
requiring energy may happen. Even the heavy nuclei have high enough
energy to break the Coloumb barrier and fuse to heavier elements. All the
elements in the universe heavier than iron have been produced close to the
core of a massive star undergoing a supernova explosion. When the shock
wave blows off the material around the core, these heavier elements are
transported to the interstellar material. We remember that a star started
its life cycle as a cloud of interstellar gas contracting due to its own weight.
So the elements produced in supernova explosions are being used in the
birth of another star. Parts of these elements go into the planets which
are formed in a disc around the protostar.

The first stars which formed in the universe are called population III stars.
These stars contained no heavier elements (in astrophysics, all the heavier
elements are called ’metals’, even if they are not metals in the normal
sense). These stars have never been observed directly but theories for
the evolution of the universe predict that they must have existed. The
next generation, produced in part from the ’ashes’ of the the population
III stars are called population II stars. These stars have small traces of
metals but are generally also metal poor stars. Finally, the population
I stars is the latest generation of stars containing a non-zero abundance
of metals. The Sun is a population I star. The exact details of stellar
evolution are different depending on whether it is a population I, II or III
star: computer simulations show that the metal content (which is usually
very small even in population I stars) plays an important role in stellar
evolutionary processes.
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Figure 7: Info-figure: A pulsar is a highly magnetized, rotating neutron
star that emits a beam of intense electromagnetic radiation. The magnetic
axis is not aligned with the rotation axis, therefore the magnetic field lines
are dragged around, producing synchrotron radiation as they accelerate
electrons outside the neutron star. The synchrotron radiation is emitted
in the direction of the magnetic axis and can only be observed when the
beam of emission is pointing towards the Earth, much the way a lighthouse
can only be seen when the light is pointed in the direction of an observer.
The precise periods of pulsars make them useful tools. E.g., observations
of a pulsar in a binary neutron star system (PSR B1913+16) were used
to indirectly confirm the existence of gravitational waves, and the first
exoplanets were discovered around a pulsar (PSR B1257+12). Certain
types of pulsars rival atomic clocks in their accuracy in keeping time.
(Figure: NRAO )
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6 Type Ia supernovae

We learned in previous lectures that supernovae can be divided into type
I and type II according to their spectra. The type I supernovae could
further be divided into type Ia, Ib and Ic. The type I supernovae did not
show any hydrogen lines in their spectra whereas type II supernovae show
strong hydrogen lines. It is currently believed that type II as well as type
Ib and Ic are core collapse supernovae discussed above. Type Ib and Ic
do not have hydrogen lines because the outer hydrogen rich parts of the
star have been blown off before the supernova explosion.

A type Ia supernova is believed to be a completely different phenomenon.
There are several different theories trying to explain type Ia supernova,
non of which are understood well. In one of the most popular theories,
a type Ia supernova occurs in a binary system: A white dwarf star and
a main sequence or giant star orbit a common center of mass. When the
two stars are sufficiently close, the white dwarf starts accreting material
from the other star. Material from the other star is accreted in a shell
on the surface of the degenerate white dwarf. The temperature in the
core of the white dwarf increases and nuclear fusion processes burning
carbon and oxygen to heavier elements ignite. Since the white dwarf is
degenerate, a process similar to the helium flash occur. Fusion processes
start everywhere in the white dwarf at the same time and the white dwarf
is completely destroyed in the following explosion. The exact details of
these explosions are still studied along with other completely different
theories in computer models. Hopefully, in the future, these models will
be able to tell us exactly what happens in type Ia supernova explosions. As
we will see in the lectures on cosmology, understanding type Ia supernovae
is crucial for understanding the universe as a whole. We also remember
that type Ia supernovae are used as standard candles to measure distances.
It turns out that the luminosity is usually almost the same in most type Ia
explosions. If these explosions really are white dwarf stars exploding, we
can understand why the luminosity is almost the same in all supernovae
of this kind: There is one common factor in all cases: the white dwarf
stars usually have a mass close to the Chandrasekhar mass of 1.4M�.

7 An Example: SK 69o202

Let us take as an example the blue giant that exploded as a supernova
of type ii in the Large Magellenic Cloud in 1987; the star SK 69o202,
later known as SN 1987a. The details of the star’s life have been obtained
through computer simulations. This originally 20M� star’s life may be
summarized as follows:

1. H→He fusion for a period of roughly 107 yr with a core temperature
Tc ≈ 40× 106 K, a central density ρc ≈ 5× 103 kg/m3, and a radius
≈ 6R�.
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2. He→C, O fusion for a period of roughly 106 yr with a core temper-
ature Tc ≈ 170 × 106 K, a central density ρc ≈ 9 × 105 kg/m3, and
a radius ≈ 500R�. The core mass is 6M�. The star is in this phase
a red super-giant.

3. C→Ne, Na, Mg fusion for a period of roughly 103 yr with a core
temperature Tc ≈ 700×106 K, a central density ρc ≈ 1.5×108 kg/m3,
and a radius ≈ 50R�. The core mass is 4M�. From this stage and
onward the star loses more energy through the emission of neutrinos
than from the emission of photons. In addition, from this point
onwards the evolution of the core is very rapid and the outer layers
do not have time to adjust to the changes happening below: the
star’s radius remains unchanged.

4. Ne→O, Mg fusion for a period of some few years with a core tem-
perature Tc ≈ 1.5 × 109 K, a central density ρc ≈ 1010 kg/m3.

5. O→S, Si fusion for a period of some few years with a core tempera-
ture Tc ≈ 2.1 × 109 K. The neutrino luminosity is at this stage 105

greater than the photon luminosity.

6. S, Si→“Fe” (actually a mix of Fe, Ni, Co) fusion for a period of a
few days with a core temperature Tc ≈ 3.5×109 K, a central density
ρc ≈ 1011 kg/m3. Si “melts” into α-particles, neutrons and protons
which again are built into “Fe” nuclei. The core mass is now roughly
1.4M�.

7. The core looses energy in the electron capture process and starts
contracting rapidly. The energy in the core collapse is released and
the star explodes as a supernova.

8 Problems

Problem 1 (20–30 min.)

Where does the huge amount of energy released in a supernova explosion
originally come from? Does it come from nuclear processes or from other
processes? Explain how the energy is released and how the energy is
transferred between different types of energy until it is released as a huge
flux of photons and neutrinos. Read the text carefully to understand the
details in the processes and make a diagram of the energy flow.

Problem 2 (1–2 hours)

In this exercise we will study the properties of a neutron star.

1. In the text we find an approximate expression for the radius of a
white dwarf star using the equation of hydrostatic equilibrium and
the degeneration pressure for electrons. Go back to the text and
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study how this was done in detail. Now, repeat the same exercise
but for a neutron degenerate neutron star. What is the radius of a
neutron star having 1.4M�? (The size of a neutron star is typically
10 km, your answer will not be correct but should be roughly this
order of magnitude)

2. In the following, use a neutron star radius of 10 km which is more
realistic. What is the typical density of a neutron star? Express the
result in the following way: To which radius R would you need to
compress Earth in order to obtain densities similar to neutron star
densities?

3. Compare the density in the neutron star to the densities in an atomic
nucleus: Use the density you obtained in the previous question for
the neutron star density. For the density of an atomic nucleus: As-
sume that a Uranium atom has about 200 nucleons and has a spher-
ical nucleus with radius of about 7 fm (1 fm= 10−15 m).

4. Express the radius of a 1.4M� neutron star (use numbers from pre-
vious questions) in terms of the mass of the neutron star. How close
are you to the Schwarzschild radius when you are at the surface of a
neutron star? Is general relativity needed when modeling a neutron
star?

5. The Sun rotates about its axis once every 25 days. Use conserva-
tion of angular momentum to find the rotation period if the Sun is
compressed to

(a) a typical white dwarf star

(b) a typical neutron star

Compare your answer to numbers given in the text for the rotational
period of a neutron star. If you found a faster period, can you
find some possible reasons why the observed rotational period is
slower? Hint 1: The angular momentum for a solid object is given
by L = Iω where I is the moment of inertia. Hint 2: Assume that
the Sun is a solid sphere and remember that the moment of inertia
of a solid sphere is (2/5)MR2

6. We will assume that we do not know what pulsars are, but we suspect
that they might be rotating objects. The larger the radius of a
rotating object, the faster the velocity of an object on the surface of
the rotating object. The fastest observed pulsar is the millisecond
pulsar. Assume that its rotational period is 1 ms. What is the
maximum radius R that the object can have without having objects
at the surface of the object moving faster than light? What kind
of astronomical objects could this possibly be? If you find several
possibilities, try to find reasons to eliminate some of them.

Problem 3 (30–60 min.)
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We learned in the lectures on distances in the universe that by observing
the light curve of a supernova one could find the luminosity and thereby
the absolute magnitude in order to obtain the distance. Here we will study
a very simple model for a supernova in order to see if we can understand
this relation between light curve and luminosity.

1. We have seen that in a supernova explosion, the outer shells of a star
is basically lifted away from the central core. Assume that we can
model the supernova in this way: the shell of gas simply expands
spherically very fast outwards in all directions. It is equal to saying
that the radius R of the star increases. Assume that we use Doppler
measurements every day after the explosion of the supernova and
find that the shell around the core expands with a constant velocity
v. A time ∆t after the explosion started we also measure the effective
temperature of the shell by spectroscopic measurements and find it
to have the temperature T . If we assume the shell to be a black
body, show that the luminosity of the supernova at this point is
given approximately by

L = 4πσT 4v2∆t2.

Which assumptions did you make in order to arrive at this expres-
sion?

2. A supernova is observed in a distant galaxy. Nobody had so far
managed to measure the distance to this distant galaxy, but now
there was a supernova explosion there and this allowed us to find the
distance to the supernova and therefore also to the galaxy. You can
now make all the assumptions from the previous question about the
supernova. The supernova is observed every day after the explosion
and the velocity of the shell is found to be moving at a constant
velocity of 9500 km/s. After 42 days, the effective temperature is
measured to be 6000 K. Find the luminosity of the supernova after
42 days expressed in solar luminosities (L� = 3.8 × 1026W)

3. Find the absolute magnitude of the supernova after 42 days. (The
absolute magnitude of the Sun is M = 4.83).

4. The apparent magnitude of the supernova after 42 days is m = 10.
What is the distance to the supernova? Express your answer in Mpc.
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